AQA Maths Pure Core 1

Mark Scheme Pack
2006-2014

AQA

ASSESSMENT and
OUALIFICATIONS

General Certificate of Education

Mathematics 6360

MPC1 Pure Core 1

Mark Scheme 2006 examination - January series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Key To Mark Scheme And Abbreviations Used In Marking

M	mark is for method		
m or dM	mark is dependent on one or more M marks and is for method		
A	mark is dependent on M or m marks and is for accuracy		
B	mark is independent of M or m marks and is for method and accuracy		
E	mark is for explanation		
\checkmark or ft or F	follow through from previous incorrect result	MC	mis-copy
CAO	correct answer only	MR	mis-read
CSO	correct solution only	RA	required accuracy
AWFW	anything which falls within	FW	further work
AWRT	anything which rounds to	ISW	ignore subsequent work
ACF	any correct form	FIW	from incorrect work
AG	answer given	BOD	given benefit of doubt
SC	special case	WR	work replaced by candidate
OE	or equivalent	FB	formulae book
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme
$-x$ EE	deduct x marks for each error	G	graph
NMS	no method shown	c	candidate
PI	possibly implied	sf	significant figure(s)
SCA	substantially correct approach	dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

MPC1

Q	Solution	Marks	Total	Comments
1(a) (b)	$\begin{aligned} & (\sqrt{5})^{2}+2 \sqrt{5}-2 \sqrt{5}-4=1 \\ & \sqrt{8}=2 \sqrt{2} ; \sqrt{18}=3 \sqrt{2} \\ & \text { Answer }=5 \sqrt{2} \end{aligned}$	M1 A1 M1 A1	2 2	Multiplying out or difference of two squares attempted Full marks for correct answer /no working Either correct Full marks for correct answer /no working
(b)	Total		4	
2(a)(i)	$15+4 k=7 \quad \Rightarrow 4 k=-8 \quad \Rightarrow k=-2$	B1	1	AG (condone verification or $y=-2$)
(ii)	$\frac{1}{2}\left(x_{1}+x_{2}\right) \text { or } \frac{1}{2}\left(y_{1}+y_{2}\right)$	M1		
	Midpoint coordinates $\left(3,-\frac{1}{2}\right)$	A1	2	One coordinate correct implies M1
(b)	Attempt at $\Delta y / \Delta x$ or $y=-\frac{3}{4} x+\frac{7}{4}$	M1		(Not x over y)(may use M instead of A / B)
	Gradient $A B=-\frac{3}{4}$	A1	2	-0.75 etc any correct equivalent
(c)(i)	$m_{1} m_{2}=-1$ used or stated	1		
	Hence gradient $A C=\frac{4}{3}$	A1 \checkmark	2	Follow through their gradient of $A B$ from part (b)
(ii) (iii)	$y-1=\frac{4}{3}(x-1)$ or $3 y=4 x-1$ etc	B1	1	Follow through their gradient of $A C$ from part (c) (i) must be normal \& $(1,1)$ used
	$y=0 \quad \Rightarrow x-1=-\frac{3}{4}$	M1		Putting $y=0$ in their $A C$ equation and attempting to find x
	$x=\frac{1}{4}$	A1	2	CSO. C has coordinates $\left(\frac{1}{4}, 0\right)$
	Total		10	
3(a)(i)	$\begin{aligned} & (x-2)^{2} \\ & +5 \end{aligned}$	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \end{aligned}$	2	$\begin{gathered} p=2 \\ q=5 \end{gathered}$
(ii)	Minimum point (2,5) or $x=2, y=5$	B2J	2	B1 for each coordinate correct or ft Alt method M1, A1 sketch, differentiation
(b)(i)	$\begin{aligned} & 12-2 x=x^{2}-4 x+9 \\ & \Rightarrow x^{2}-2 x-3=0 \end{aligned}$	B1	1	Or $x^{2}-4 x+9+2 x=12$ AG (be convinced) (must have $=0$)
(ii)	$(x-3)(x+1)=0$	M1		Attempt at factors or quadratic formula or one value spotted
	$x=3,-1$	A1		Both values correct \& simplified
	Substitute one value of x to find y Points are $(3,6)$ and $(-1,14)$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	4	May substitute into equation for L or C y-coordinates correct linked to x values
	Total		9	

MPC1 (cont)

Q	Solution	Marks	Total	Comments
4(a)	$\begin{aligned} & (m+4)^{2}=m^{2}+8 m+16 \\ & b^{2}-4 a c=(m+4)^{2}-4(4 m+1)=0 \\ & m^{2}+8 m+16-16 m-4=0 \\ & \Rightarrow m^{2}-8 m+12=0 \end{aligned}$ $\begin{aligned} & (m-2)(m-6)=0 \\ & m=2, m=6 \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	3 2	Condone $4 m+4 m$ $b^{2}-4 a c$ (attempted and involving m 's and no x 's) or $b^{2}-4 a c=0$ stated AG (be convinced - all working correct$=0$ appearing more than right at the end) Attempt at factors or quadratic formula SC B1 for 2 or 6 only without working
	Total		5	
5(a)	$\begin{aligned} & (x-4)^{2}+(y+3)^{2} \\ & (11+16+9=36) \quad \text { RHS }=6^{2} \end{aligned}$	$\begin{aligned} & \mathrm{B} 2 \\ & \mathrm{~B} 1 \end{aligned}$	3	B1 for one term correct Condone 36
$(b)(i)$ (ii)	$\begin{aligned} & \text { Centre }(4,-3) \\ & \text { Radius }=6 \end{aligned}$	$\begin{aligned} & \mathrm{B} 1 \sqrt{ } \\ & \mathrm{~B} 1 \sqrt{ } \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	Ft their a and b from part (a) Ft their r from part (a)
(c)(i)	$\begin{aligned} & C O^{2}=(-4)^{2}+3^{2} \\ & C O=5 \end{aligned}$	$\begin{gathered} \mathrm{M} 1 \\ \mathrm{~A} 1 \checkmark \end{gathered}$	2	Accept + or - with numbers but must add Full marks for answer only
(ii)	Considering CO and radius $\mathrm{CO}<r \Rightarrow O$ is inside the circle	$\begin{gathered} \text { M1 } \\ \text { A1 } \checkmark \end{gathered}$	2	Ft outside circle when 'their $C O^{\prime}>r$ or on the circle when 'their $C O^{\prime}=r$ SC B1 \checkmark if no explanation given
	Total		9	
6(a)(i)	$\begin{aligned} & \mathrm{p}(2)=8+4-20+8 \\ & =0, \Rightarrow x-2 \quad \text { is a factor } \end{aligned}$	M1 A1	2	Finding p(2) M0 long division Shown $=0$ AND conclusion/ statement about $x-2$ being a factor
(ii)	Attempt at quadratic factor $\begin{aligned} & x^{2}+3 x-4 \\ & \mathrm{p}(x)=(x-2)(x+4)(x-1) \end{aligned}$	M1 A1 A1	3	or factor theorem again for $2^{\text {nd }}$ factor or $(x+4)$ or $(x-1)$ proved to be a factor
(b)	y	B1		Graph through $(0,8) \quad 8$ marked
	$/$	B1 \checkmark		Ft "their factors" 3 roots marked on x axis
		$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	4	Cubic curve through their 3 points Correct including x - intercepts correct Condone max on y-axis etc or slightly wrong concavity at ends of graph
	Total		9	

$A Q A$

ASSESSMENT and
OUALIFICATIONS
ALLIANCE

General Certificate of Education

Mathematics 6360

MPC1 Pure Core 1

Mark Scheme

2006 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Key To Mark Scheme And Abbreviations Used In Marking

M	mark is for method	
m or dM	mark is dependent on one or more M marks and is for method	
A	mark is dependent on M or m marks and is for accuracy	
B	mark is independent of M or m marks and is for method and accuracy	
E	mark is for explanation	
Jor ft or F	follow through from previous	
	incorrect result	
CAO	correct answer only	MC

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

MPC1

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Marks \& Total \& Comments \\
\hline \begin{tabular}{l}
\[
1(\mathbf{a})(\mathbf{i})
\] \\
(ii) \\
(b) \\
(c)
\end{tabular} \& \begin{tabular}{l}
Attempt to eliminate \(x\) or \(y: 7 x=42\) etc
\[
\begin{aligned}
\& x=6 \\
\& y=-\frac{1}{2}
\end{aligned}
\] \\
Grad of perp \(=-1 /\) their gradient \(A B\) \(=\frac{2}{3}\)
\[
y-7=\frac{2}{3}(x-1) \text { or } 3 y-2 x=19
\]
\end{tabular} \& \[
\begin{gathered}
\text { M1 } \\
\text { A1 } \\
\text { M1 } \\
\text { A1 } \\
\text { M1 } \\
\text { A1 } \\
\text { A1 } \\
\text { M1 } \\
\text { A1 } \\
\text { A1 }
\end{gathered}
\] \& 2
2
2
3
3
3 \& \begin{tabular}{l}
Must be \(y\) on top and subtr'n of cords \\
Any correct equivalent \\
Verifying 2 points or \(y=-\frac{3}{2} x+c\) \\
AG (or grad \& 1 point verified) \\
Solving \(x-4 y=8 ; \quad 3 x+2 y=17\) \\
\(C\) is point \(\left(6,-\frac{1}{2}\right)\) \\
Or \(m_{1} m_{2}=-1\) used or stated \\
ft their gradient \(A B\) \\
CSO Any correct form of equation
\end{tabular} \\
\hline \& Total \& \& 10 \& \\
\hline \begin{tabular}{l}
2(a) \\
(b) \\
(c) \\
(d)
\end{tabular} \& \begin{tabular}{l}
\[
\begin{aligned}
\& (x+4)^{2} \\
\& +3
\end{aligned}
\] \\
\((x+4)^{2}=-3\) or "their" \((x+p)^{2}=-q\) \\
No real square root of -3 \\
Translation (and no additional transf'n) through \(\left[\begin{array}{c}-4 \\ 3\end{array}\right]\)
\end{tabular} \& \[
\begin{gathered}
\hline \text { B1 } \\
\text { B1 } \\
\text { M1 } \\
\text { A1 } \\
\\
\text { B1 } \checkmark \\
\text { B1 } \\
\text { B1 } \\
\\
\text { E1 } \\
\text { M1 } \\
\text { A1 }
\end{gathered}
\] \& 2
2
2

3

3 \& | $\begin{aligned} & p=4 \\ & q=3 \end{aligned}$ |
| :--- |
| Or discriminant $=64-76$ |
| Disc <0 so no real roots (all correct figs) |
| ft their $-p$ and q (or correct) |
| Parabola (vertex roughly as shown) |
| Crossing at $y=19$ marked or $(0,19)$ stated |
| Not shift, move, transformation, etc One component correct eg 3 units up All correct - if not vector - must say 4 units in negative x - direction, to left etc |

\hline \& Total \& \& 10 \&

\hline 3(a)
(b)

(c) \& \begin{tabular}{l}
$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=-10 x^{4}
$$

When $x=1$, gradient $=-10$

Tangent is $y-5=-10(x-1)$ or $y+10 x=15$ etc When $x=-2 \quad \frac{\mathrm{~d} y}{\mathrm{~d} x}=-160($ or $<0)$ $\left(\frac{\mathrm{d} y}{\mathrm{~d} x}<0\right.$ hence) y is decreasing

 \&

M1

A1

B1」

M1

A1

B1J

E1J
\end{tabular} \& 2

3
3

2 \& | $k x^{4} \quad$ condone extra term Correct derivative unsimplified |
| :--- |
| FT their gradient when $x=1$ |
| Attempt at $y \&$ tangent (not normal) |
| CSO Any correct form |
| Value of their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ when $x=-2$ |
| ft Increasing if their $\frac{\mathrm{d} y}{\mathrm{~d} x}>0$ |

\hline \& Total \& \& 7 \&

\hline
\end{tabular}

MPC1 (cont)

Q	Solution	Marks	Total	Comments
6(a)	$\begin{aligned} & \mathrm{p}(3)=27-36+9 \\ & \mathrm{p}(3)=0 \Rightarrow x-3 \text { is a factor } \end{aligned}$	$\begin{gathered} \hline \text { M1 } \\ \text { A1 } \end{gathered}$	2	Finding p(3) and not long division Shown $=0$ plus a statement
(b)	$x\left(x^{2}-4 x+3\right)$ or $(x-3)\left(x^{2}-x\right)$ attempt $\mathrm{p}(x)=x(x-1)(x-3)$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	Or $\mathrm{p}(1)=0 \Rightarrow x-1$ is a factor attempt Condone $x+0$ or $x-0$ as factor
(c)(i)	$\begin{aligned} & \mathrm{p}(2)=8-16+6 \\ & \text { (Remainder is) }-2 \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	2	Must use p (2) and not long division
(ii)	Attempt to multiply out and compare coefficients $\begin{aligned} a & =-2 \\ b & =-1 \\ r & =-2 \end{aligned}$ SC B1 for $\mathrm{r}=-2$ if M0 scored	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	4	Or long division (2 terms of quotient) $x^{2}-2 x \ldots$ -1 Withhold final A1 for long division unless written as $(x-2)\left(x^{2}-2 x-1\right)-2$
	Total		10	
7(a)(i)	$(x-2)^{2}$ centre has x-coordinate $=2$ and y-coordinate $=0$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \\ & \text { B1 } \end{aligned}$	3	Attempt to complete square for x M1 implied if value correct or -2 Centre (2,0)
(ii)	$\begin{aligned} & \text { RHS }=18 \\ & \text { Radius }=\sqrt{18} \\ & \text { Radius }=3 \sqrt{2} \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	3	Withhold if circle equation RHS incorrect Square root of RHS of equation (if >0)
(b)	Perpendicular bisects chord so need to use Length of 4 $\begin{aligned} & d^{2}=(\text { (radius })^{2}-4^{2} \\ & d^{2}=18-16 \end{aligned}$ so perpendicular distance $=\sqrt{2}$	B1 M1 A1	3	
(c)(i)	$\begin{aligned} & x^{2}+(2 k-x)^{2}-4 x-14=0 \\ & (2 k-x)^{2}=4 k^{2}-4 k x+x^{2} \\ & \Rightarrow 2 x^{2}+4 k^{2}-4 k x-4 x-14=0 \\ & \left(\Rightarrow x^{2}+2 k^{2}-2 k x-2 x-7=0\right) \\ & \Rightarrow x^{2}-2(k+1) x+2 k^{2}-7=0 \end{aligned}$	M1 B1 A1	3	AG (be convinced about algebra and $=0$)
(ii)	$\begin{aligned} & 4(k+1)^{2}-4\left(2 k^{2}-7\right) \\ & 4 k^{2}-8 k-32=0 \text { or } k^{2}-2 k-8=0 \\ & (k-4)(k+2)=0 \end{aligned}$	M1 A1 m1		" $b^{2}-4 a c$ " in terms of k (either term correct) $b^{2}-4 a c=0$ correct quadratic equation in k Attempt to factorise, solve equation
	$k=-2, k=4$	A1	4	SC B1, B1 for -2, 4 (if M0 scored)
(iii)	Line is a tangent to the circle	E1	1	Line touches circle at one point etc
	Total		17	
	TOTAL		75	

General Certificate of Education

Mathematics 6360

MPC1 Pure Core 1

Mark Scheme

2007 examination - January series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2007 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

[^0]
Key to mark scheme and abbreviations used in marking

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
B	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation

Jor ft or F	follow through from previous incorrect result	MC	mis-copy
CAO	correct answer only	MR	mis-read
CSO	correct solution only	RA	required accuracy
AWFW	anything which falls within	FW	further work
AWRT	anything which rounds to	ISW	ignore subsequent work
ACF	any correct form	FIW	from incorrect work
AG	answer given	BOD	given benefit of doubt
SC	special case	WR	work replaced by candidate
OE	or equivalent	FB	formulae book
A2,1	2 or 1 (or 0$)$ accuracy marks	NOS	not on scheme
$-x$ EE	deduct x marks for each error	G	graph
NMS	no method shown	c	candidate
PI	possibly implied	sf	significant figure(s)
SCA	substantially correct approach	dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Solution	Marks	Total	Comments
1(a)(i)	$\begin{aligned} & \mathrm{p}(-2)=-8-16+14+k \\ & \mathrm{p}(-2)=0 \Rightarrow-10+k=0 \quad \Rightarrow k=10 \end{aligned}$ Must have statement if $k=10$ substitute	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	2	or long division or $(x+2)\left(x^{2}-6 x+5\right)$ AG likely withhold if $\mathrm{p}(-2)=0$ not seen
(ii)	$\begin{aligned} & \mathrm{p}(x)=(x+2)\left(x^{2}+\ldots .5\right) \\ & \mathrm{p}(x)=(x+2)\left(x^{2}-6 x+5\right) \\ & \Rightarrow \mathrm{p}(x)=(x+2)(x-1)(x-5) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	3	Attempt at quadratic or second linear factor $(x-1)$ or $(x-5)$ from factor theorem Must be written as product
(b)	$\begin{aligned} & \mathrm{p}(3)=27-36-21+k \\ & (\text { Remainder })=k-30=-20 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	long division scores M0 Condone $k-30$
		B1		Curve thro' 10 marked on y-axis
(c)		B1 \checkmark		FT their 3 roots marked on x-axis
	$-\quad 0 \quad 1$	M1		Cubic shape with a max and min
	1	A1	4	Correct graph (roughly as on left) going beyond -2 and 5 (condone max anywhere between $x=-2$ and 1 and min between 1 and 5)
	Total		11	
2(a)(i)	$y=-\frac{3}{5} x+\ldots ; \quad \text { Gradient } A B=-\frac{3}{5}$	M1		Attempt to find $y=$ or $\Delta y / \Delta x$ or $\frac{3}{5}$ or $3 x / 5$
		A1	2	Gradient correct - condone slip in $y=\ldots$
(ii)	$m_{1} m_{2}=-1$	M1		Stated or used correctly
	$\text { Gradient of perpendicular }=\frac{5}{3}$	A1 \checkmark		ft gradient of $A B$
	$\Rightarrow y+2=\frac{5}{3}(x-6)$	A1	3	CSO Any correct form eg $y=\frac{5}{3} x-12$, $5 x-3 y=36$ etc
(b)	Eliminating x or y (unsimplified)	M1		Must use $3 x+5 y=8 ; 2 x+3 y=3$
	$x=-9$	A1		$R(-97)$
	$y=7$	A1	3	$B(-9,7)$
(c)	$\begin{gathered} 4^{2}+(k+2)^{2} \quad(=25) \text { or } 16+d^{2}=25 \\ k=1 \end{gathered}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$		Diagram with 3,4, 5 triangle Condone slip in one term (or $k+2=3$)
	or $\quad k=-5$	A1	3	SC1 with no working for spotting one correct value of k. Full marks if both values spotted with no contradictory work
	Total		11	

Q	Solution	Marks	Total	Comments
3(a)	$\begin{aligned} & \frac{\sqrt{5}+3}{\sqrt{5}-2} \times \frac{\sqrt{5}+2}{\sqrt{5}+2} \\ & \text { Numerator }=5+3 \sqrt{5}+2 \sqrt{5}+6 \end{aligned}$	M1 M1		Multiplying top \& bottom by $\pm(\sqrt{5}+2)$ Multiplying out (condone one slip) $\pm(\sqrt{5+3})(\sqrt{5+2})$
	$\begin{aligned} & =5 \sqrt{5}+11 \\ \text { Final answer } & =5 \sqrt{5}+11 \end{aligned}$	$\begin{aligned} & \text { A1 } \\ & \text { A1 } \end{aligned}$	4	With clear evidence that denominator $=1$
(b)(i)	$\sqrt{45}=3 \sqrt{5}$	B1	1	
(ii)	$\sqrt{20}=\sqrt{4} \sqrt{5} \text { or } 4 \sqrt{5}=\sqrt{4} \times \sqrt{20}$ or attempt to have equation with $\sqrt{5}$ or $\sqrt{20}$ only	M1		Both sides
	$\begin{aligned} & {[x 2 \sqrt{5}=7 \sqrt{5}-3 \sqrt{5}] \text { or } x \sqrt{20}=2 \sqrt{20}} \\ & x=2 \end{aligned}$	$\begin{aligned} & \text { A1 } \\ & \text { A1 } \end{aligned}$	3	$\begin{aligned} & \text { or } x=\sqrt{4} \\ & \text { CSO } \end{aligned}$
	Total		8	
4(a)	$\begin{aligned} & (x+1)^{2}+(y-6)^{2} \\ & \quad(1+36-12=25) \quad \text { RHS }=5^{2} \end{aligned}$	$\begin{aligned} & \hline \text { B2 } \\ & \text { B1 } \end{aligned}$	3	B1 for one term correct or missing + sign Condone 25
(b)(i) (ii)	Centre (-1, 6) Radius $=5$	$\begin{aligned} & \mathrm{B} 1 \checkmark \\ & \mathrm{~B} 1 \checkmark \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	FT their a and b from part (a) or correct FT their r from part (a) RHS must be >0
(c)	Attempt to solve "their" $x^{2}+2 x+12=0$	M1		Or comparing "their" $y_{c}=6$ and their $r=5$ may use a diagram with values shown
	(all working correct) so no real roots or statement that does not intersect	A1	2	$\left\{\begin{array}{l} r<y_{c} \text { so does not intersect } \\ \text { condone } \pm 1 \text { or } \pm 6 \text { in centre for A1 } \end{array}\right.$
(d)(i)	$(4-x)^{2}=16-8 x+x^{2}$	B1		Or $(-2-x)^{2}=4+4 x+x^{2}$
	$\begin{gathered} x^{2}+(4-x)^{2}+2 x-12(4-x)+12=0 \\ \text { or }(x+1)^{2}+(-2-x)^{2}=25 \end{gathered}$	M1		Sub $y=4-x$ in circle eqn (condone slip) or "their" circle equation
	$\Rightarrow 2 x^{2}+6 x-20=0 \Rightarrow x^{2}+3 x-10=0$	A1	3	AG CSO (must have $=0$)
(ii)	$\begin{aligned} (x+5)(x-2)= & 0 \Rightarrow x=-5, x=2 \\ & Q \text { has coordinates }(-5,9) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	Correct factors or unsimplified solution to quadratic (give credit if factorised in part (i)) SC2 if Q correct. Allow $\mathrm{x}=-5 \quad y=9$
(iii)	Mid point of 'their' $(-5,9)$ and $(2,2)$	M1		Arithmetic mean of either x or y coords
	$\left(-1 \frac{1}{2}, 5 \frac{1}{2}\right)$	A1	2	Must follow from correct value in (ii)
	Total		14	

MPC1 (cont)

General Certificate of Education

Mathematics 6360

MPC1 Pure Core 1

Mark Scheme

2007 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk
Copyright © 2007 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

[^1]
Key to mark scheme and abbreviations used in marking

M	mark is for method		
m or dM	mark is dependent on one or more M marks and is for method		
A	mark is dependent on M or m marks and is for accuracy		
B	mark is independent of M or m marks and is for method and accuracy		
E	mark is for explanation		
\checkmark or ft or F	follow through from previous incorrect result	MC	mis-copy
CAO	correct answer only	MR	mis-read
CSO	correct solution only	RA	required accuracy
AWFW	anything which falls within	FW	further work
AWRT	anything which rounds to	ISW	ignore subsequent work
ACF	any correct form	FIW	from incorrect work
AG	answer given	BOD	given benefit of doubt
SC	special case	WR	work replaced by candidate
OE	or equivalent	FB	formulae book
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme
$-x \mathrm{EE}$	deduct x marks for each error	G	graph
NMS	no method shown	c	candidate
PI	possibly implied	sf	significant figure(s)
SCA	substantially correct approach	dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Solution	Marks	Total	Comments
1(a)(i)	$\text { Gradient } \begin{aligned} A B & =\frac{-1-5}{6-2} \text { or } \frac{5--1}{2-6} \\ & =\frac{-6}{4}=-\frac{3}{2} \end{aligned}$	M1 A1	2	$\begin{aligned} & \pm \frac{6}{4} \text { implies M1 } \\ & \mathrm{AG} \end{aligned}$
(ii)	$\left.\begin{array}{l} y-5 \\ y+1 \end{array}\right\}=-\frac{3}{2}\left\{\begin{array}{l} (x-2) \\ (x-6) \end{array}\right.$	M1		or $y=-\frac{3}{2} x+c$ and attempt to find c
	$\Rightarrow 3 x+2 y=16$	A1	2	OE; must have integer coefficients
(b)(i)	Gradient of perpendicular $=\frac{2}{3}$	M1		or use of $m_{1} m_{2}=-1$
	$\Rightarrow y-5=\frac{2}{3}(x-2)$	A1	2	$3 y-2 x=11$ (no misreads permitted)
(ii)	Substitute $x=k, y=7$ into their (b)(i)	M1		or grads $\frac{7-5}{k-2} \times \frac{-3}{2}=-1$
	$\Rightarrow 2=\frac{2}{3}(k-2) \Rightarrow k=5$	A1	2	or Pythagoras $(k-2)^{2}=(k-6)^{2}+8$
	Total		8	
2(a)	$\frac{\sqrt{63}}{3}=\sqrt{7} \text { or } \frac{3 \sqrt{7}}{3}$	B1		or $\frac{(\sqrt{7} \sqrt{63}+14 \times 3)}{3 \sqrt{7}}$
	$\frac{14}{\sqrt{7}}=2 \sqrt{7} \text { or } \frac{14 \sqrt{7}}{7}$	B1		$\text { or } \frac{\sqrt{7}}{\sqrt{7}}(\quad) \quad \mathrm{M} 1$
	$\Rightarrow \operatorname{sum}=3 \sqrt{7}$	B1	3	\Rightarrow correct answer with all working correct A2
(b)	Multiply by $\frac{\sqrt{7}+2}{\sqrt{7}+2}$	M1		
	Denominator $=7-4=3$	A1		
	$\text { Numerator }=(\sqrt{7})^{2}+\sqrt{7}+2 \sqrt{7}+2$	m1		multiplied out (allow one slip) $9+3 \sqrt{7}$
	Answer $=\sqrt{7}+3$	A1	4	
	Total		7	

MPC1 (cont)

Q	Solution	Marks	Total	Comments
3(a)(i)	$(x+5)^{2}$	B1		$p=5$
	-6	B1	2	$q=-6$
(ii)	$x_{\text {vertex }}=-5($ or their $-p)$	B1 \checkmark		may differentiate but must have $x=-5$
	$y_{\text {vertex }}=-6($ or their $q)$	B1 \checkmark	2	and $y=-6$. Vertex $(-5,-6)$
(iii)	$x=-5$	B1	1	
(iv)	Translation (not shift, move etc)	E1		and NO other transformation stated
	through $\left[\begin{array}{l}-5 \\ -6\end{array}\right]$ (or 5 left, 6 down)	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	3	either component correct M1, A1 independent of E mark
(b)	$x+11=x^{2}+10 x+19$			quadratic with all terms on one side of equation
	$\begin{aligned} & \Rightarrow x^{2}+9 x+8=0 \text { or } y^{2}-13 y+30=0 \\ & (x+8)(x+1)=0 \text { or }(y-3)(y-10)=0 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { m1 } \end{aligned}$		attempt at formula (1 slip) or to faction
	$\left.\left.\begin{array}{l} x=-1 \\ y=10 \end{array}\right\} \text { or } \begin{array}{l} x=-8 \\ y=3 \end{array}\right\}$	$\begin{aligned} & \text { A1 } \\ & \text { A1 } \end{aligned}$	4	both x values correct both y values correct and linked
				SC $(-1,10)$ B2, $(-8,3)$ B2 no working
	Total		12	
4(a)(i)	$t^{3}-52 t+96$	M1		one term correct
		A1		another term correct
		A1	3	all correct (no $+c$ etc)
(ii)	$3 t^{2}-52$	M1		ft one term correct
		A1 \checkmark	2	ft all "correct"
(b)	$\frac{\mathrm{d} y}{\mathrm{~d} t}=8-104+96$	M1		substitute $t=2$ into their $\frac{\mathrm{d} y}{\mathrm{~d} t}$
	$=0 \Rightarrow$ stationary value	A1		CSO; shown $=0+$ statement
	Substitute $t=2$ into $\frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}} \quad(=-40)$	M1		any appropriate test, e.g. $y^{\prime}(1)$ and $y^{\prime}(3)$
	$\frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}<0 \Rightarrow \text { max value }$	A1	4	all values (if stated) must be correct
(c)	Substitute $t=1$ into their $\frac{\mathrm{d} y}{\mathrm{~d} t}$	M1		must be their $\frac{\mathrm{d} y}{\mathrm{~d} t}$ NOT $\frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}$
	$\text { Rate of change }=45\left(\mathrm{~cm} \mathrm{~s}^{-1}\right)$	A1 \checkmark	2	ft their $y^{\prime}(1)$
(d)	$\begin{aligned} & \text { Substitute } t=3 \text { into their } \frac{\mathrm{d} y}{\mathrm{~d} t} \\ & (27-156+96=-33<0) \end{aligned}$	M1		interpreting their value of $\frac{\mathrm{d} y}{\mathrm{~d} t}$
	\Rightarrow decreasing when $t=3$	E1 \checkmark	2	allow increasing if their $\frac{\mathrm{d} y}{\mathrm{~d} t}>0$
	Total		13	

MPC1 (cont)

Q	Solution	Marks	Total	Comments
6(a)(i)	$\begin{aligned} & \mathrm{f}(1)=1+4-5 \\ & \Rightarrow \mathrm{f}(1)=0 \Rightarrow(x-1) \text { is factor } \end{aligned}$	M1 A1	2	must find $\mathrm{f}(1)$ NOT long division shown $=0$ plus a statement
(ii)	Attempt at $x^{2}+x+5$	M1		long division leading to $x^{2} \pm x+\ldots$ or equating coefficients
	$\mathrm{f}(x)=(x-1)\left(x^{2}+x+5\right)$	A1	2	$p=1, q=5$ by inspection scores B1, B1
(iii)	$(x=) 1$ is real root	B1		
	Consider $b^{2}-4 a c$ for their $x^{2}+x+5$ $b^{2}-4 a c=1^{2}-4 \times 5=-19<0$	M1		not the cubic!
	Hence no real roots (or only real root is 1)	A1	3	CSO; all values correct plus a statement
(b)(i)	$\int \ldots \mathrm{d} x=\frac{x^{4}}{4}+2 x^{2}-5 x(+c)$	M1 A1		one term correct unsimplified second term correct unsimplified
			3	all correct unsimplified
(ii)	$[4+8-10]-\left[\frac{1}{4}+2-5\right]$	M1		correct use of limits 1 and 2; $F(2)-F(1)$ attempted
	$=4 \frac{3}{4}$	A1		
	Area of $\Delta=\frac{1}{2} \times 11=5 \frac{1}{2}$	B1		correct unsimplified
	$\Rightarrow \text { shaded area }=5 \frac{1}{2}-4 \frac{3}{4}$			combined integral of $7 x-6-x^{3}$ scores M1 for limits correctly used then
	$=\frac{3}{4}$	A1	4	A3 correct answer with all working correct
	Total		14	
7(a)	$b^{2}-4 a c=4-4(k-1)(2 k-3)$	M1		(or seen in formula) condone one slip
	Real roots when $b^{2}-4 a c \geqslant 0$	E1		must involve $\mathrm{f}(k) \geqslant 0 \quad$ (usually M1 must be earned)
	$4-4\left(2 k^{2}-5 k+3\right) \geqslant 0$			
	$\Rightarrow-2 k^{2}+5 k-3+1 \geqslant 0$			at least one step of working justifying $\leqslant 0$
	$\Rightarrow 2 k^{2}-5 k+2 \leqslant 0$	A1	3	AG
(b)(i)	$(2 k-1)(k-2)$	B1	1	
(ii)	(Critical values) $\frac{1}{2}$ and 2	B1 \checkmark		ft their factors or correct values seen on diagram, sketch or inequality or stated
	$+, \quad-\quad+$			
	$\begin{array}{ll} \frac{1}{2} & 2 \end{array}$	M1		use of sketch / sign diagram
	$\Rightarrow 0.5 \leqslant k \leqslant 2$	A1	3	M1A0 for $0.5<k<2$ or $k \geqslant 0.5, k \leqslant 2$
	Total		7	
	TOTAL		75	

General Certificate of Education

Mathematics 6360

MPC1 Pure Core 1

Mark Scheme

2008 examination - January series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2008 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme and abbreviations used in marking

M	mark is for method		
m or dM	mark is dependent on one or more M marks and is for method		
A	mark is dependent on M or m marks and is for accuracy		
B	mark is independent of M or m marks and is for method and accuracy		
E	mark is for explanation		
\checkmark or ft or F	follow through from previous		
	incorrect result	MC	mis-copy
CAO	correct answer only	MR	mis-read
CSO	correct solution only	RA	required accuracy
AWFW	anything which falls within	FW	further work
AWRT	anything which rounds to	ISW	ignore subsequent work
ACF	any correct form	FIW	from incorrect work
AG	answer given	BOD	given benefit of doubt
SC	special case	WR	work replaced by candidate
OE	or equivalent	FB	formulae book
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme
$-x$ EE	deduct x marks for each error	G	graph
NMS	no method shown	C	candidate
PI	possibly implied	sf	significant figure(s)
SCA	substantially correct approach	dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

MPC1

Q	Solution	Marks	Total	Comments
1(a)	Mid-point of $B C=(3,-2)$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	2	Either coordinate correct Both cords correct. Accept $x=3, y=-2$
(b)(i)	$\begin{aligned} & \frac{\Delta y}{\Delta x}=\frac{3-1}{-2-4} \\ & =-\frac{1}{3} \end{aligned}$	M1 A1	2	$\pm \frac{2}{6}$ OE implies M1
(ii)	$\begin{aligned} & y-3=\text { "their } \operatorname{grad} "(x+2) \text { or } \\ & y-1=\text { "their grad" }(x-4) \\ & \text { Hence } x+3 y=7 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	Or $y=m x+c$ and correct attempt to find c
(iii)	$\begin{aligned} & y+5=\text { "their grad } A B "(x-2) \\ & y+5=-\frac{1}{3}(x-2) \text { or } x+3 y+13=0 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	Or "their $x+q y=c$ " and attempt to find c OE
(c)	Grad $B C=3\left(\right.$ from $\frac{\Delta y}{\Delta x}=\frac{1+5}{4-2}$ OE) $m_{1} m_{2}=-1$ stated or $\operatorname{grad} B C=3$ and $\operatorname{grad} A B=-\frac{1}{3}$ or $\operatorname{grad} B C \times \operatorname{grad} A B\left(=3 \times-\frac{1}{3}\right)$	B1 M1		Or 2 lengths correct: $A B=\sqrt{40} ; B C=\sqrt{40} ; A C=\sqrt{80}$ Or attempt at Pythagoras or Cosine Rule
	Product of gradients $=-1$ Hence $A B$ and $B C$ are perpendicular	$\begin{gathered} \text { A1 } \\ \text { CSO } \end{gathered}$	3	$A C^{2}=A B^{2}+B C^{2} \Rightarrow \angle A B C=90^{\circ}$ Completing proof and statement
	Total		11	
2(a)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=4 x^{3}-32$	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { A1 } \end{gathered}$	3	Reduce one power by 1 One term correct All correct (no $+c$ etc)
(b)	$\begin{aligned} & \text { Stationary point } \Rightarrow \frac{\mathrm{d} y}{\mathrm{~d} x}=0 \\ & \Rightarrow x^{3}=8 \end{aligned}$	M1 A1 $\sqrt{ }$	3	$x^{n}=k$ following from their $\frac{\mathrm{d} y}{\mathrm{~d} x}$
(c)(i)	$\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=12 x^{2}$	B1 \checkmark	1	$\text { FT their } \frac{\mathrm{d} y}{\mathrm{~d} x}$
(ii)	When $x=2, \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}$ considered \Rightarrow minimum point	$\begin{gathered} \text { M1 } \\ \text { E1 } \checkmark \end{gathered}$	2	Or complete test with $2 \pm \varepsilon$ using $\frac{\mathrm{d} y}{\mathrm{~d} x}$
(d)	Putting $x=0$ into their $\frac{\mathrm{d} y}{\mathrm{~d} x}(=-32)$ $\frac{\mathrm{d} y}{\mathrm{~d} x}<0 \Rightarrow$ decreasing	M1 A1 $\sqrt{ }$	2	Allow "increasing" if their $\frac{\mathrm{d} y}{\mathrm{~d} x}>0$
	Total		11	

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Marks \& Total \& Comments

\hline 3(a)

(b) \& \[
$$
\begin{aligned}
& 5 \sqrt{8}=10 \sqrt{2} \\
& \frac{6}{\sqrt{2}}=\frac{6 \sqrt{2}}{2} \quad(=3 \sqrt{2}) \\
& \text { Answer }=13 \sqrt{2} \\
& \frac{\sqrt{2}+2}{3 \sqrt{2}-4} \times \frac{3 \sqrt{2}+4}{3 \sqrt{2}+4} \\
& \text { Numerator }=6+6 \sqrt{2}+4 \sqrt{2}+8 \\
& \text { Denominator }=18-16(=2) \\
& \text { Final answer }=5 \sqrt{2}+7
\end{aligned}
$$

\] \& | B1 |
| :--- |
| M1 |
| A1 |
| M1 |
| m1 |
| B1 |
| A1 | \& 4 \& | Or $\frac{5 \sqrt{16}+6}{\sqrt{2}}$ gets B1 |
| :--- |
| then M1 for rationalising; and A1 answer $n=13$ |
| Multiplying top \& bottom by $\pm(3 \sqrt{2}+4)$ |
| Multiplying out (condone one slip) |

\hline \& Total \& \& 7 \&

\hline 4(a) \& $$
\begin{aligned}
& x^{2}+(y-5)^{2} \\
& \text { RHS }=5
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \text { B1 } \\
& \text { B1 }
\end{aligned}
$$

\] \& 2 \& \[

$$
\begin{aligned}
& b=5 \\
& k=5
\end{aligned}
$$
\]

\hline (b)(i) \& $$
\text { Centre }(0,5)
$$ \& B1 \checkmark \& 1 \& FT their b from part (a)

\hline (ii) \& $$
\text { Radius }=\sqrt{5}
$$ \& B1 \checkmark \& 1 \& FT their k from part (a); RHS must be >0

\hline (c)(i) \& $$
\begin{aligned}
& x^{2}+4 x^{2}-20 x+20=0 \\
& \Rightarrow x^{2}-4 x+4=0
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \text { M1 } \\
& \text { A1 }
\end{aligned}
$$
\] \& 2 \& May substitute into original or "their (a)" CSO; AG

\hline (ii) \& | $(x-2)^{2}=0 \text { or } x=2$ |
| :--- |
| Repeated root implies tangent Point of contact is $P(2,4)$ | \& | M1 |
| :--- |
| E1 |
| A1 | \& 3 \& Or $b^{2}-4 a c$ shown $=0$ plus statement

\hline (d) \& $$
\begin{aligned}
& \left(C Q^{2}=\right) 1^{2}+1^{2} \\
& \sqrt{2}<\sqrt{5} \Rightarrow Q \text { lies inside circle }
\end{aligned}
$$ \& \[

$$
\begin{gathered}
\text { M1 } \\
\text { A1 } \\
\text { CSO } \\
\hline
\end{gathered}
$$

\] \& 2 \& | FT their C |
| :--- |
| $C Q$ or $C Q^{2}$ OE must appear for A1 |

\hline \& Total \& \& 11 \&

\hline \multirow[t]{2}{*}{5(a)} \& $(9+x)(1-x)$ \& M1 \& \& $$
\pm(9 \pm x)(1 \pm x)
$$

\hline \& \& A1 \& 2 \& Correct factors

\hline (b) \& $25-\left(x^{2}+8 x+16\right)=9-8 x-x^{2}$ \& B1 \& 1 \& AG

\hline (c)(i) \& $x=-4$ is line of symmetry \& B1 \& 1 \&

\hline (ii) \& Vertex is ($-4,25$) \& B1,B1 \& 2 \&

\hline \multirow[t]{3}{*}{(iii)} \& \& M1 \& \& General \cap shape

\hline \& \& B1 \& \& -9 and 1 marked on x-axis or stated

\hline \& \& A1 \& 3 \& | 9 marked on y-axis and maximum to the left of y-axis |
| :--- |
| Must continue below x-axis at both ends |

\hline \& Total \& \& 9 \&

\hline
\end{tabular}

General Certificate of Education

Mathematics 6360

MPC1 Pure Core 1

Mark Scheme

2008 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2008 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme and abbreviations used in marking

M	mark is for method		
m or dM	mark is dependent on one or more M marks and is for method		
A	mark is dependent on M or m marks and is for accuracy		
B	mark is independent of M or m marks and is for method and accuracy		
E	mark is for explanation		
for ft or F	follow through from previous		
incorrect result	MC	mis-copy	
CAO	correct answer only	MR	mis-read
CSO	correct solution only	RA	required accuracy
AWFW	anything which falls within	FW	further work
AWRT	anything which rounds to	ISW	ignore subsequent work
ACF	any correct form	FIW	from incorrect work
AG	answer given	BOD	given benefit of doubt
SC	special case	WR	work replaced by candidate
OE	or equivalent	FB	formulae book
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme
$-x$ EE	deduct x marks for each error	G	graph
NMS	no method shown	c	candidate
PI	possibly implied	sf	significant figuress)
SCA	substantially correct approach	dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

MPC1

Q	Solution	Marks	Total	Comments
1(a)	L: straight line with positive gradient and	B1		Line must cross both axes but need not
	cutting at $\left(\frac{1}{3}, 0\right)$ and $(0,-1)$ (intercepts stated or marked on sketch)	B1		Condone 0.33 or better for $\frac{1}{3}$
	C : attempt at parabola \cup or \cap through $(-3,0)$ and $(1,0)$ or values -3 and 1 stated as intercepts on x-axis	B1		
	axis and cutting x-axis twice through $(0,-3)$ and minimum point to left of y-axis	M1 A1	5	
(b)	$(x+3)(x-1)=3 x-1$	M1		
	$\begin{aligned} & x^{2}+3 x-x-3-3 x+1=0 \\ & \Rightarrow x^{2}-x-2=0 \end{aligned}$	A1	2	AG; must have "= 0 " and no errors
(c)	$\begin{aligned} & (x-2)(x+1)=0 \\ & \Rightarrow x=2,-1 \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$		$(x \pm 1)(x \pm 2)$ or use of formula (one slip) correct values imply M1A1
	Substitute one value of x to find y	m1		
	Points of intersection (2, 5) and (-1,-4)	A1	4	$\begin{aligned} & \text { May say } x=2, y=5 \text { etc } \\ & \text { SC: }(2,5) \Rightarrow \text { B2 } \\ & \quad(-1,-4) \Rightarrow B 2 \text { without working } \end{aligned}$
	Total		11	
2(a)(b)	$x y=6$	B1	1	B0 for $\sqrt{36}$ or ± 6
	$\begin{aligned} \frac{y}{x} & =\frac{2 \sqrt{3}}{\sqrt{3}} \text { or } \sqrt{\frac{12}{3}} \text { or } \sqrt{\frac{4}{1}} \text { or } \frac{\sqrt{12}}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} \\ & =2 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	Allow M1 for ± 2
(c)	$x^{2}+2 x y+y^{2}$ or $(\sqrt{3}+2 \sqrt{3})^{2}$ correct	M1		or $(\sqrt{3}+\sqrt{12})(\sqrt{3}+\sqrt{12})$ expanded as 4 terms - no more than one slip
	Correct with 2 of $x^{2}, y^{2}, 2 x y$ simplified $3+2 \sqrt{36}+12 \quad$ or $\quad 3^{2} \times 3$ or $(3 \sqrt{3})^{2}$	A1		Correct but unsimplified - one more step
	$=27$	A1	3	
	Total		6	

MPC1 (cont)

Q	Solution	Marks	Total	Comments
3(a)	$V=x(9-3 x)^{2}$	M1		Attempt at V in terms of x (condone slip when rearranging formula for $y=9-3 x$) or $(9-3 x)^{2}=81-54 x+9 x^{2}$
(b)(i)	$\begin{aligned} V & =x\left(81-54 x+9 x^{2}\right) \\ & =81 x-54 x^{2}+9 x^{3} \end{aligned}$	A1	2	AG; no errors in algebra
	$\frac{\mathrm{d} V}{\mathrm{~d} x}=81-108 x+27 x^{2}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$		One term correct Another correct All correct (no $+c$ etc)
	$=27\left(x^{2}-4 x+3\right)$	A1	4	CSO; all algebra and differentiation correct
(ii)	$\begin{aligned} & (x-3)(x-1) \text { or }(27 x-81)(x-1) \text { etc } \\ & \Rightarrow x=1,3 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	"Correct" factors or correct use of formula
				SC: B1,B1 for $x=1, x=3$ found by inspection (provided no other values)
(c)	$\frac{\mathrm{d}^{2} V}{\mathrm{~d} x^{2}}=-108+54 x \quad$ (condone one slip)	M1		ft their $\frac{\mathrm{d} V}{\mathrm{~d} x}$ (may have cancelled 27 etc)
		A1	2	CSO; all differentiation correct
(d)(i)	$x=3 \Rightarrow \frac{\mathrm{~d}^{2} V}{\mathrm{~d} x^{2}}=54 ; \quad x=1 \Rightarrow \frac{\mathrm{~d}^{2} V}{\mathrm{~d} x^{2}}=-54$	B1」	1	ft their $\frac{\mathrm{d}^{2} V}{\mathrm{~d} x^{2}}$ and their two x-values
(ii)	($x=$) 1 (gives maximum value)	E1	1	Provided their $\frac{\mathrm{d}^{2} V}{\mathrm{~d} x^{2}}<0$
(iii)	$V_{\text {max }}=36$	B1	1	CAO
	Total		13	
4(a)	$\left(x-\frac{3}{2}\right)^{2}$	B1		Must have () ${ }^{2} \quad p=1.5$
	$+\frac{7}{4}$	B1	2	$q=1.75$
(b)	Minimum value is $\frac{7}{4}$	B1ヶ	1	ft their q or correct value
(c)	Translation (and no other transformation stated)	E1		(not shift, move, transformation etc)
	$\left[\frac{3}{2}\right]$	M1		M1 for one component correct or ft their p or q values
	$\left\lfloor\frac{7}{4}\right\rfloor$	A1	3	CSO; condone 1.5 right and 1.75 up etc
	Total		6	

MPC1 (cont)

MPC1 (cont)

Q	Solution	Marks	Total	Comments
7(a)	$\begin{array}{r} (x-8)^{2}+(y-13)^{2} \\ =13^{2} \end{array}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	2	Exactly this with + and squares Condone 169
(b)(i)	$\operatorname{grad} P C=\frac{12}{5}$	B1	1	Must simplify $\frac{-12}{-5}$
(ii)	$\text { grad of tangent }=\frac{-1}{\operatorname{grad} P C}=-\frac{5}{12}$	B1^		Condone $-\frac{1}{2.4}$ etc
	tangent has equation $y-1=-\frac{5}{12}(x-3)$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$		ft gradient but M0 if using grad $P C$ Correct - but not in required final form
	$5 x+12 y=27$ OE	A1	4	MUST have integer coefficients
(iii)	half chord $=5$	B1		Seen or stated
		M1		Pythagoras used correctly $d^{2}=13^{2}-5^{2}$
	Distance $=12$	A1	3	CSO
	Total		10	
8(a)	$b^{2}-4 a c=16 k^{2}-36(k+1)$	M1		Condone one slip
	Real roots: discriminant $\geqslant 0$ $\Rightarrow 16 k^{2}-36 k-36 \geqslant 0$	B1		
	$\Rightarrow 4 k^{2}-9 k-9 \geqslant 0$	A1	3	AG (watch signs)
(b)	$(4 k+3)(k-3)$	M1		Or correct use of formula (unsimplified)
	critical points $\quad(k=)-\frac{3}{4}, 3$	A1		Not in a form involving surds Values may be seen in inequalities etc
		M1		Or sign diagram
	$k \geqslant 3, \quad k \leqslant-\frac{3}{4}$	A1	4	NMS full marks
				Condone use of word "and" but final answer in a form such as $3 \leqslant k \leqslant-\frac{3}{4}$ scores A0
	Total		7	
	TOTAL		75	

General Certificate of Education

Mathematics 6360

MPC1 Pure Core 1

Mark Scheme

2009 examination - January series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2009 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

[^2]
Key to mark scheme and abbreviations used in marking

$\left.\begin{array}{llll}\text { M } & \text { mark is for method } & \\ \hline \text { m or dM } & \text { mark is dependent on one or more M marks and is for method } \\ \text { A } & \text { mark is dependent on } \mathrm{M} \text { or m marks and is for accuracy }\end{array}\right]$

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.
Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

MPC1

Q	Solution	Marks	Total	Comments
4(a)(i)	$(x+1)^{2}$	B1		$p=1$
	+ 4	B1	2	$q=4$
(ii)	$\begin{aligned} & (x+1)^{2} \geqslant 0 \Rightarrow(x+1)^{2}+4>0 \\ & \left(\Rightarrow x^{2}+2 x+5>0 \text { for all values of } x\right) \end{aligned}$	E1	1	Condone if they say $(x+1)^{2}$ positive and adding 4 so always positive
(b)(i)	$x=-1$ or $y=4$	M1		ft their $x=-p$ or $y=q$
	Minimum point is ($-1,4$)	A1	2	
(ii)	$\backslash \quad y \mathbb{4} /$	B1		Sketch roughly as shown
	${ }^{5}$	B1	2	y-intercept 5 or $(0,5)$ marked or stated
(c)	Translation (not shift, move etc)	E1		and NO other transformation stated
	through $\left[\begin{array}{c}-1 \\ 4\end{array}\right] \quad$ (or 1 left, 4 up etc)	M1		either component correct or ft their $-p, q$
		A1	3	correct translation M1, A1 independent of E mark
	Total		10	
5(a)(i)	$\frac{\mathrm{d} x}{\mathrm{~d} t}=2 t^{3}-40 t+66$	M1		one term correct
		A1	3	another term correct all correct unsimplified (no $+c$ etc)
(ii)	$\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}=6 t^{2}-40$	M1		ft one term correct
		A1 \checkmark	2	ft all "correct", 2 terms equivalent
(b)	$\frac{\mathrm{d} x}{\mathrm{~d} t}=54-120+66$	M1		substitute $t=3$ into their $\frac{\mathrm{d} x}{\mathrm{~d} t}$
	$=0 \Rightarrow$ stationary value	A1		CSO shown $=0$ (54 or 2×27 seen) and statement
	Substitute $t=3$ into $\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}} \quad(=14)$ $\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}>0 \Rightarrow$ minimum value	M1 A1	4	CSO; all values (if stated) must be correct
(c)	Substitute $t=1$ into their $\frac{\mathrm{d} x}{\mathrm{~d} t}$	M1		must be their $\frac{\mathrm{d} x}{\mathrm{~d} t}$ NOT $\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}$ etc
	$\frac{\mathrm{d} x}{\mathrm{~d} t}=28$	A1 \checkmark	2	ft their $\frac{\mathrm{d} x}{\mathrm{~d} t}$ when $t=1$
(d)	Substitute $t=2$ into their $\frac{\mathrm{d} x}{\mathrm{~d} t}$	M1		must be their $\frac{\mathrm{d} x}{\mathrm{~d} t}$ NOT $\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}$ or x
	$=16-80+66=2 \quad(>0)$			Interpreting their value of $\frac{\mathrm{d} x}{\mathrm{~d} t}$
	\Rightarrow increasing when $t=2$	E1 \checkmark	2	Allow decreasing if their $\frac{\mathrm{d} x}{\mathrm{~d} t}<0$
	Total		13	

MPC1 (cont)

Q	Solution	Marks	Total	Comments
6(a)(i)	$\begin{aligned} & \mathrm{p}(2)=8+2-10 \\ & \Rightarrow \mathrm{p}(2)=0 \Rightarrow(x-2) \text { is factor } \end{aligned}$	M1 A1	2	Must find p(2) NOT long division Shown = 0 plus a statement
(ii)	Attempt at long division (generous)	M1		Obtaining a quotient $x^{2}+c x+d$ or equating coefficients (full method)
	$\mathrm{p}(x)=(x-2)\left(x^{2}+2 x+5\right)$	A1	2	$a=2, b=5$ by inspection B1, B1
(b)(i)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=3 x^{2}+1$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$		One term correct All correct - no $+c$ etc
	When $x=2 \frac{\mathrm{~d} y}{\mathrm{~d} x}=3 \times 4+1$	m1		Sub $x=2$ into their $\frac{\mathrm{d} y}{\mathrm{~d} x}$
	Therefore gradient at Q is 13	A1	4	CSO
(ii)	$y=13(x-2)$	M1		Tangent (NOT normal) attempted ft their gradient answer from (b)(i)
		A1	2	CSO; correct in any form
(iii)	$\int \ldots \mathrm{d} x=\frac{x^{4}}{4}+\frac{x^{2}}{2}-10 x(+c)$	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { A1 } \end{gathered}$	3	one term correct second term correct all correct (condone no +c)
(iv)	$[4+2-20]-[0]=-14$	M1		$F(2)$ attempted and possibly $F(0)$ Must have earned M1 in (b)(iii)
	Area of shaded region $=14$	A1	2	CSO; separate statement following correct evaluation of limits
	Total		15	

General Certificate of Education

Mathematics 6360

MPC1 Pure Core 1

Mark Scheme

2009 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2009 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme and abbreviations used in marking

M	mark is for method		
m or dM	mark is dependent on one or more M marks and is for method		
A	mark is dependent on M or m marks and is for accuracy		

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.
Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Solution	Marks	Total	Comments
1(a)(i)	$y=-\frac{3}{5} x+\frac{11}{5}$ Or correct expression for gradient using two correct points	M1		Attempt at $y=\mathrm{f}(x)$ Or answer $=\frac{3}{5}$ or $-\frac{3}{5} x$ gets M1 But answer of $\frac{3}{5} x$ gets M0
	$\text { (Gradient of } A B=\text {) }-\frac{3}{5}$	A1	2	Correct answer scores 2 marks . Condone error in rearranging formula if answer for gradient is correct.
(ii)	$m_{1} m_{2}=-1$	M1		Used or stated
	$\text { Gradient of perpendicular }=\frac{5}{3}$	A1 \checkmark		ft their answer from (a)(i) or correct
	$y-1=\frac{5}{3}(x-2) \quad$ OE	A1	3	$5 x-3 y=7$; or $y=\frac{5}{3} x+c, \quad c=-\frac{7}{3}$ etc CSO
(b)	Eliminating x or y but must use $3 x+5 y=11 \& 2 x+3 y=8$	M1		An equation in x only or y only
	$x=7$ $y=-2$	A1		Answer only of $(7,-2)$ scores 3 marks
	Total		8	
2(a)	$\frac{5+\sqrt{7}}{3-\sqrt{7}} \times \frac{3+\sqrt{7}}{3+\sqrt{7}}$	M1		
	Numerator $=15+5 \sqrt{7}+3 \sqrt{7}+7$	m1		Condone one error or omission
	Denominator = 9-7 ($=2$)	B1		Must be seen as the denominator
	$\text { (Answer }=\text {) } 11+4 \sqrt{7}$	A1	4	
(b)	$(2 \sqrt{5})^{2}=20 \quad \text { or } \quad(3 \sqrt{2})^{2}=18$	B1		Either correct
	$\begin{aligned} & \text { their }(2 \sqrt{5})^{2}-(3 \sqrt{2})^{2} \\ & \quad\left(x^{2}=20-18\right) \end{aligned}$	M1		Condone missing brackets and x^{2} $x^{2}=2 \Rightarrow \mathrm{~B} 1, \mathrm{M} 1$
	$(\Rightarrow x=) \sqrt{2}$	A1	3	$\pm \sqrt{2} \text { scores A0 }$
				Answer only of 2 scores B0, M0 Answer only of $\sqrt{2}$ scores 3 marks
	Total		7	

Q	Solution	Marks	Total	Comments
3(a)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=5 x^{4}+40 x$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	3	One of these powers correct One of these terms correct All correct (no $+c$ etc)
(b)	$\begin{aligned} & x=-2 \quad \frac{\mathrm{~d} y}{\mathrm{~d} x}=5 \times(-2)^{4}+(40 \times-2) \\ & \frac{\mathrm{d} y}{\mathrm{~d} x}=5 \times 16+(40 \times-2)=0 \end{aligned}$	M1		Substitute $x=-2$ into their $\frac{\mathrm{d} y}{\mathrm{~d} x}$
	$\Rightarrow P$ is stationary point	A1		CSO Shown $=0$ plus statement eg "st pt", "as required", "grad = 0"etc
	$\begin{aligned} \text { Or their } \frac{\mathrm{d} y}{\mathrm{~d} x}=0 & \Rightarrow x^{n}=k \\ x^{3}=-8 & \Rightarrow x=-2 \end{aligned}$	(M1) (A1)	2	CSO $x=0$ need not be considered
(c)(i)	$\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=20 x^{3}+40$	B1 \checkmark		Correct ft their $\frac{\mathrm{d} y}{\mathrm{~d} x}$
	$=20 \times(-2)^{3}+40$	M1		Subst $x=-2$ into their second derivative
	$(=-160+40)=-120$	A1	3	CSO
(ii)	Maximum (value) their c(i) answer must be <0 Other valid methods acceptable provided "maximum" is the conclusion	E1 \checkmark	1	Accept minimum if their $c(i)$ answer >0 and correctly interpreted Parts (i) and (ii) may be combined by candidate but -120 must be seen to award A1 in part (c)(i)
(d)	$($ When $x=1) y=13$	B1		
	When $x=1, \frac{\mathrm{~d} y}{\mathrm{~d} x}=5+40$	M1		Sub $x=1$ into their $\frac{\mathrm{d} y}{\mathrm{~d} x}$
	$y=(\text { their } 45) x+k \quad \mathrm{OE}$	m1		$\mathrm{ft} \text { their } \frac{\mathrm{d} y}{\mathrm{~d} x}$
	Tangent has equation $y-13=45(x-1)$	A1	4	CSO OE $y=45 x+c, \quad c=-32$
	Total		13	

Q	Solution	Marks	Total	Comments
4(a)(i)	$\begin{aligned} & \mathrm{p}(3)=27-3+6 \\ & \text { (Remainder) }=30 \end{aligned}$ Or long division up to remainder Quotient $=x^{2}+3 x+8$ and remainder $=30$ clearly stated or indicated	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { (M1) } \\ \text { (A1) } \end{gathered}$	2	p(3) attempted
(ii)	$p(-2)=-8+2+6$ $\mathrm{p}(-2)=0 \Rightarrow x+2$ is factor Minimum statement required "factor"	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	$\mathrm{p}(-2)$ attempted : NOT long division Shown $=0$ plus statement May make statement first such as " $x+2$ is a factor if $\mathrm{p}(-2)=0$ "
(iii)	$\begin{gathered} b=-2 \\ c=3 \end{gathered}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$		No working required for B1 + B1 Try to mark first using B marks
	or long division/comparing coefficients $\mathrm{p}(x)=(x+2)\left(x^{2}-2 x+3\right)$	(M1) (A1)	2	Award M1 if B0 earned and a clear method is used Must write final answer in this form if long division has been used to get A1
(iv)	$b^{2}-4 a c=(-2)^{2}-4 \times 3$	M1		Discriminant correct from their quadratic M0 if $b=-1, c=6$ used (using cubic eqn)
	$\begin{aligned} b^{2}-4 a c=-8 & (\text { or }<0) \\ & \Rightarrow \text { no (other) real roots } \end{aligned}$	A1		CSO All values must be correct plus statement
	Or $(x-1)^{2}+2$	(M1)		Completion of square for their quadratic
	$(x-1)^{2}+2>0$ therefore no real roots Or $(x-1)^{2}=-2$ has no real roots	(A1)	2	Shown to be positive plus statement regarding no real roots
(b)(i)	$\left(y_{B}=\right)^{6}$	B1	1	Condone (0, 6)
(ii)	$\frac{x^{4}}{4}-\frac{x^{2}}{2}+6 x$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$		One term correct Another term correct All correct (ignore $+c$ or limits)
	$[]_{-2}^{0}=0-(4-2-12)$	m1		$F(-2)$ attempted
	$=10$	A1	5	CSO Clearly from $\mathrm{F}(0)-\mathrm{F}(-2)$
(iii)	Area of $\Delta=\frac{1}{2} \times 2 \times 6$	M1		Condone - 2 and ft their y_{B} value Or $\int_{-2}^{0}(3 x+6) \mathrm{d} x$ and attempt to integrate
	Shaded region area $=10-6=4$	$\begin{aligned} & \text { A1 } \\ & \text { A1 } \end{aligned}$	3	Must be positive allow -6 converted to +6 CSO 10 must come from correct working

MPC1 (cont)

Q	Solution	Marks	Total	Comments
5(a)(i)	$C(5,-12)$	B1	1	
(ii)	Radius $=13$ (or $\sqrt{169}$)	B1	1	$\pm \sqrt{169}$ or ± 13 as final answer scores B0
(ii)	$\begin{aligned} & (-5)^{2}+12^{2} \quad \text { or } \quad 25+144 \\ & \quad=169 \quad \Rightarrow \text { circle passes through } O \end{aligned}$	B1	1	Correct arithmetic plus statement Eg " O lies on circle", "as required" etc
	Sketch	B1		Freehand circle through origin and cutting positive x-axis with centre in $4^{\text {th }}$ quadrant Condone value 10 missing or incorrect
	$\begin{array}{ll} 25+(p+12)^{2}=169 & \\ (p+12)= \pm 12 & p=-24 \end{array}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	3	Or doubling their y_{C}-coordinate Condone use of y instead of p SC B2 for correct value of p stated or marked on diagram
(c)(i)	$\operatorname{grad} A C=\frac{-12+7}{5+7}$	M1		correct expression, but ft their C
(ii)	$=-\frac{5}{12}$	A1	2	Condone $\frac{5}{-12}$
	$\text { grad tangent }=\frac{12}{5}$	B1 \checkmark		$\frac{-1}{\text { their } \operatorname{grad} A C}$
	$y+7=\frac{12}{5}(x+7)$	M1		ft "their $\frac{12}{5}$ " must be tangent and not $A C$
	$\Rightarrow 12 x-5 y+49=0$	A1	3	OE with integer coefficients with all terms on one side of the equation
	Total		11	

Q	Solution	Marks	Total	Comments
6(a)(i)	$(x-4)^{2} \quad$ or $p=4$	B1		ISW for $p=-4$ if $(x-4)^{2}$ seen
	+ $1 \quad$ or $q=1$	B1	2	
(ii)	(Minimum value is) 1	B1 \checkmark	1	Correct or FT "their q" (NOT coords)
(iii)	(Minimum occurs when $x=$) 4	B1 \checkmark	1	Correct or FT "their p" - may use calculus Condone (p, **) for this B1 mark
(b)(i)	$(x-5)^{2}=x^{2}-10 x+25$	B1	1	
(ii)	$\begin{aligned} & (x-5)^{2}+(7-x-4)^{2} \\ & =(x-5)^{2}+(3-x)^{2} \end{aligned}$	M1		Condone one slip in one bracket May be seen under $\sqrt{ }$ sign
	$\begin{aligned} & =x^{2}-10 x+25+9-6 x+x^{2} \\ A B^{2} & =2 x^{2}-16 x+34 \end{aligned}$	A1		From a fully correct expression
	$=2\left(x^{2}-8 x+17\right)$	A1	3	AG CSO
(iii)	Minimum $A B^{2}=2 \times$ "their (a)(ii)"	M1		Or use of their $x=4$ in expression Or use of their $B(4,3)$ and $A(5,4)$ in distance formula
				M0 if calculus used Answer only of $2 \times$ "their (a)(ii)" scores M1, A0
	Minimum $A B=\sqrt{2}$	A1	2	
	Total		10	

General Certificate of Education

Mathematics 6360

MPC1 Pure Core 1

Mark Scheme
2010 examination - January series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk
Copyright © 2010 AQA and its licensors. All rights reserved.

COPYRIGHT
AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme and abbreviations used in marking

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.
Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Solution	Marks	Total	Comments
5(a)	$x^{2}-8 x+15+2$	B1		Terms in x must be collected, PI
	their $(x-4)^{2} \quad(+k)$	M1		$\mathrm{ft}(x-p)^{2}$ for their quadratic
	$=(x-4)^{2}+1$	A1	3	ISW for stating $p=-4$ if correct expression seen
(b)(i)		M1		\cup shape in any quadrant (generous)
		A1		correct with min at $(4,1)$ stated or 4 and 1 marked on axes condone within first quadrant only
		B1	3	crosses y-axis at $(0,17)$ stated or 17 marked on y-axis
(ii)	$y=k \quad y=1$	M1		$y=$ constant
		A1	2	Condone $y=0 x+1$
(c)	Translation (not shift, move etc)	E1		and no other transformation
	with vector $\left[\begin{array}{l}4 \\ 1\end{array}\right]$	M1		One component correct or ft either their p or q
		A1	3	CSO; condone 4 across, 1 up; or two separate vectors etc
	Total		11	

MPC1 (cont)

MPC1 (cont)

Q	Solution	Marks	Total	Comments
7(a)(i)	$\begin{gathered} x= \pm 2 \text { or } y= \pm 6 \text { or }(x-2)^{2}+(y+6)^{2} \\ C(2,-6) \end{gathered}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	correct
(ii)	$\begin{aligned} &\left(r^{2}=\right) 4+36-15 \\ & \Rightarrow r=5 \end{aligned}$	M1 A1	2	$\begin{aligned} & (\text { RHS }=) \text { their }(-2)^{2}+\text { their }(6)^{2}-15 \\ & \text { Not } \pm 5 \text { or } \sqrt{25} \end{aligned}$
(b)	explaining why $\left\|y_{C}\right\|>r ; 6>5$	E1		Comparison of y_{C} and r, eg $-6+5=-1$ or indicated on diagram
	full convincing argument, but must have correct y_{C} and r	E1	2	Eg "highest point is at $y=-1$ " scores E2 E1: showing no real solutions when $y=0$ +E 1 stating centre or any point below x axis
(c)(i)	$\left(P C^{2}=\right)(5-2)^{2}+(k+6)^{2}$			ft their C coords
	$=9+k^{2}+12 k+36$	M1		and attempt to multiply out
	$P C^{2}=k^{2}+12 k+45$	A1	2	AG CSO (must see $P C^{2}=$ at least once)
(ii)	$\left.\begin{array}{l} P C>r \Rightarrow P C^{2}>25 \\ \Rightarrow k^{2}+12 k+20>0 \end{array}\right\}$	B1	1	AG \quad Condone $\left.\begin{array}{l}k^{2}+12 k+45>25 \\ \Rightarrow k^{2}+12 k+20>0\end{array}\right\}$
(iii)	$(k+2)(k+10)$	M1		Correct factors or correct use of formula
	$k=-2, k=-10$ are critical values	A1		May score M1, A1 for correct critical values seen as part of incorrect final answer with or without working.
	Use of sketch or sign diagram:			
		M1		If previous A1 earned, sign diagram or sketch must be correct for M1, otherwise M1 may be earned for an attempt at the sketch or sign diagram using their critical values.
	$\Rightarrow k>-2, k<-10$	A1	4	$k \geqslant-2, k \leqslant-10$ loses final A mark
	Condone $k>-2$ OR $k<-10$ for full marks but not AND instead of OR Take final line as their answer			Answer only of $k>-2, k>-10$ etc scores M1, A1, M0 since the critical values are evident. Answer only of $k>2, k<-10$ etc scores M0, M0 since the critical values are not both correct.
	Total		13	
	TOTAL		75	

XMCA2

| XMCA2 (cont) | Marks | Total | Comments |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Q(a)(i) | Solution | | Modulus graph |

XMCA2 (cont)

Q	Solution	Marks	Total	Comments
5	$V=\pi \int_{0}^{1} \cos \left(x^{2}\right) \mathrm{d} x$	M1		$\int \cos \left(x^{2}\right) \mathrm{d} x$ Correct limits. (Condone k, or missing π until the final mark)

XMCA2 (cont)

Q	Solution	Marks	Total	Comments
6(a)(i)		B2,1,0	2	B2 correct sketch-no part curve in $2^{\text {nd }}, 3^{\text {rd }}$ or $4^{\text {th }}$ quadrants and 'In3' (B1 for general shape in 1^{5} quadrant, ignore other quadrants; $\ln 3$ not requireo
(ii)	Range of $\mathrm{f}: \mathrm{f}(x) \geq \ln 3$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	$\geq \ln 3$ or $>\ln 3$ or $f \geq \ln 3$ Allow y for $f(x)$.
(b)(i)	$\begin{aligned} y=\mathrm{f}^{-1}(x) & \Rightarrow \mathrm{f}(y)=x \\ & \Rightarrow \ln (2 y+3)=x \\ & \Rightarrow 2 y+3=\mathrm{e}^{x} \end{aligned}$	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{~m} 1 \end{aligned}$		$x \Leftrightarrow y$ at any stage Use of $\ln m=N \Rightarrow m=\mathrm{e}$
	$f^{-1}(x)=\frac{e^{x}-3}{2}$	A1	3	ACF-Accept y in place of $\mathrm{f}^{-1}(x)$
(ii)	Domain of f^{-1} is: $x \geq \ln 3$	B1F	1	ft on (a)(ii) for RHS
(c)	$\frac{\mathrm{d}}{\mathrm{~d} x}\left[(\ln (2 x+3)]=\frac{1}{(2 x+3)} \times 2\right.$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	1/(2x+3)
(d)(i)	P, the pt of intersection of $y=\mathrm{f}(x)$ and $y=\mathrm{f}^{-1}(x)$, must lie on the line $y=x$; so P has coordinates (α, α). $\mathrm{f}(\alpha)=\alpha$	M1; M1		OE eg $\mathrm{f}^{-1}(\alpha)=\alpha$
	$\ln (2 \alpha+3)=\alpha \Rightarrow 2 \alpha+3=\mathrm{e}^{\alpha}$	A1	3	A.G. CSO

(ii)	$\frac{\mathrm{d}}{\mathrm{~d} x}\left[\mathrm{f}^{-1}(x)\right]=\frac{1}{2} \mathrm{e}^{x}$ Product of gradients $=\frac{\mathrm{e}^{x}}{2 x+3}$ At $P(\alpha, \alpha)$, the product of the gradients is $\frac{\mathrm{e}^{\alpha}}{2 \alpha+3}=\frac{2 \alpha+3}{2 \alpha+3}=1$	B1F B1	2	$\frac{\mathrm{e}^{\alpha}-3}{2}=\alpha \Rightarrow \mathrm{e}^{\alpha}=2 \alpha+3$ AG CSO
	Total		15	

Q	Solution	Marks	Total	Comments
7(a)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=x \mathrm{e}^{x}+\mathrm{e}^{x} .$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	6	M1 Product rule OE.
	At stationary point(s) $e^{x}(x+1)=0$ $\mathrm{e}^{x}>0$	$\begin{aligned} & \mathrm{m} 1 \\ & \mathrm{E} 1 \end{aligned}$		OE eg accept $\mathrm{e}^{x} \neq 0$
	Only one value of x for st. pt. Curve has exactly one st pt Stationary point is $\left(-1,-\mathrm{e}^{-1}\right)$	$\begin{aligned} & \text { A1 } \\ & \text { A1 } \end{aligned}$		CSO with conclusion.
(b)	Stationary point is $\left(-1, k-\mathrm{e}^{-1}\right)$ St. pt is on x-axis, so $k=\mathrm{e}^{-1}$.	$\begin{aligned} & \text { B1F } \\ & \text { B1 } \\ & \hline \end{aligned}$		Or E1 for $y=x \mathrm{e}^{x}$ to $y=x \mathrm{e}^{x}+k$ is a vertical translation of k units.
	Total		8	
8	$\begin{aligned} & \int \frac{1}{y} \mathrm{~d} y=\int \frac{\cos x}{6+\sin x} \mathrm{~d} x \\ & \ln y=\ln (6+\sin x)(+c) \end{aligned}$	M1 A1 A1	5	Separating variables with intention to then integrate. A1 for each side. Condone missing '+c' Substituting $x=0, y=2$ to find c Correct simplified form not involving logs
	$\begin{aligned} & \ln 2=\ln 6+c \\ & \ln y=\ln (6+\sin x)+\ln 2-\ln 6 \end{aligned}$	$\mathrm{m} 1$		
	so $y=\frac{1}{3}(6+\sin x)$	A1		
	Total		5	
9(a)	$y=\mathrm{e}^{2 x} \rightarrow \mathrm{e}^{-2 x} \rightarrow 6 \mathrm{e}^{-2 x} .$ Reflection; in the y-axis Stretch, (I) parallel to y-axis, (II) scale factor 6.	$\begin{aligned} & \text { M1;A1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	4	M1 'Stretch' with either (I) or (II). For correct alternatives to the stretch after writing $y=\mathrm{e}^{-2 x+\ln 6}$ award B1 for 'translation in x-dirn.' and B1 for the correct vector (OE) noting order of transformations.
(b)(i)	Area of rectangle/shaded region below $x \text {-axis }=3 k$	B1		

\begin{tabular}{|c|c|c|c|c|}
\hline (ii) \& \begin{tabular}{l}
Area of shaded region above \(x\)-axis
\[
\begin{aligned}
\& =\int_{0}^{k} 6 e^{-2 x} d x \\
\& =\left[-3 e^{-2 x}\right]_{0}^{k}=-3 e^{-2 k}-(-3)
\end{aligned}
\] \\
Total area of shaded region
\[
\begin{aligned}
\& \quad=3 k-3 e^{-2 k}+3=4 \\
\& 3 k-1-3 e^{-2 k}=0 \Rightarrow(3 k-1) e^{2 k}-3=0 \\
\& \text { Let } f(k)=(3 k-1) e^{2 k}-3 \\
\& f(0.6)=0.8 e^{1.2}-3=-0.3(4 . .)<0 \\
\& f(0.7)=1.1 e^{1.4}-3=1 .(46 . .)>0
\end{aligned}
\] \\
Since change of sign (and f continuous), \(0.6<k<0.7\)
\end{tabular} \& \begin{tabular}{l}
B1 \\
M1 \\
A1 \\
M1 \\
A1 \\
M1 \\
A1
\end{tabular} \& 6

2 \& | $F(k)-F(0)$ following an integration. ACF |
| :--- |
| AG CSO |
| Both $f(0.6)$ and $f(0.7)$ [or better] attempted |
| AG Note: Must see the explicit reference to 0.6 and 0.7 otherwise $A C$ |

\hline \& Total \& \& 12 \&

\hline
\end{tabular}

XMCA2 (cont)

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Marks \& Total \& Comments

\hline 10(a) \& $$
\begin{aligned}
& \overrightarrow{A B}=\left[\begin{array}{l}
5 \\
1 \\
4
\end{array}\right]-\left[\begin{array}{l}
2 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
3 \\
1 \\
4
\end{array}\right] \\
& \text { Line } A B: r=\left[\begin{array}{l}
2 \\
0 \\
0
\end{array}\right]+\lambda\left[\begin{array}{l}
3 \\
1 \\
4
\end{array}\right]
\end{aligned}
$$ \& M1
A1

B1F \& 3 \& M 1 for $\pm(\overrightarrow{O B}-\overrightarrow{O A})$ OE for $\overrightarrow{B A}$ OE Ft on $\overrightarrow{A B}$

\hline \multirow[t]{3}{*}{(b)} \& $$
\left[\begin{array}{l}
3 \\
1 \\
4
\end{array}\right] \cdot\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right]=3+2+4=9
$$ \& M1 \& \& $\pm \overrightarrow{A B} \cdot$ direction vector of l evaluated

\hline \& $$
\begin{aligned}
& \sqrt{3^{2}+1^{2}+4^{2}}=\sqrt{26} \\
& \sqrt{1^{2}+2^{2}+1^{2}}=\sqrt{6}
\end{aligned}
$$ \& B1F \& \& Either; Ft on either of c's vectors

\hline \& $$
\begin{aligned}
& \sqrt{26} \sqrt{6} \cos \theta=9 \\
& \begin{aligned}
\cos \theta & =\frac{9}{\sqrt{26} \sqrt{6}}=\frac{9}{\sqrt{2} \sqrt{13} \sqrt{2} \sqrt{3}} \\
& =\cos \theta=\frac{9}{2 \sqrt{13} \sqrt{3}}=\frac{9}{2 \sqrt{39}}
\end{aligned}
\end{aligned}
$$ \& M1

A1 \& 4 \& | Use of $\|\mathrm{a}\|\|\mathrm{b}\| \cos \theta=\mathrm{a} \cdot \mathrm{b}$ |
| :--- |
| AG CSO |

\hline (c)(i) \& \& \& \&

\hline
\end{tabular}

(ii)	$\begin{aligned} & \overrightarrow{B P}=\left[\begin{array}{c} 2+p \\ 2 p \\ p \end{array}\right]-\left[\begin{array}{l} 5 \\ 1 \\ 4 \end{array}\right]=\left[\begin{array}{c} p-3 \\ 2 p-1 \\ p-4 \end{array}\right] \\ & \overrightarrow{B P} \bullet\left[\begin{array}{l} 1 \\ 2 \\ 1 \end{array}\right]=0 ; 6 p=9 \Rightarrow p=1.5 \end{aligned}$ $P(3.5,3,1.5)$ is mid point of $B C$ $\begin{aligned} & \frac{x_{C}+5}{2}=3.5 \frac{y_{C}+1}{2}=3 \frac{z_{C}+4}{2}=1.5 \\ & \Rightarrow C(2,5,-1) \end{aligned}$	M1 A1 M1 A1 A1 M1 A1	5 2	Condone one slip " $\pm \overrightarrow{B P} \bullet$ direction vector of $l=0$ ". Condone one slip Condone written as a column vector. Award equivalent marks for alternative valid methods.
	Total		14	

XMCA2 (cont)

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Marks \& Total \& Comments \\
\hline \multirow[t]{3}{*}{11(a)
(b)} \& \[
\begin{aligned}
\& \sin (2 x+x)=\sin 2 x \cos x+\cos 2 x \sin x \\
\& \quad=[2 \sin x \cos x] \cos x+\left[1-2 \sin ^{2} x\right] \sin x \\
\& \quad=2 \sin x\left(1-\sin ^{2} x\right)+\left(1-2 \sin ^{2} x\right) \sin x \\
\& \quad=2 \sin x-2 \sin ^{3} x-\sin x-2 \sin ^{3} x \\
\& \sin 3 x=3 \sin x-4 \sin ^{3} x .
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline \text { M1 } \\
\& \text { B1;B1 } \\
\& \text { m1 } \\
\& \text { A1 }
\end{aligned}
\] \& 5 \& \begin{tabular}{l}
B1 for each [...]. Accept alternative correct forms for \(\cos 2 x\) \\
All in terms of \(\sin x\)
cso
\end{tabular} \\
\hline \& \[
\begin{aligned}
\& 2 \sin 3 x=1-\cos 2 x \\
\& 2\left(3 \sin x-4 \sin ^{3} x\right)=1-\cos 2 x \\
\& 2\left(3 \sin x-4 \sin ^{3} x\right)=1-\left(1-2 \sin ^{2} x\right)
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { M1 } \\
\& \text { M1 } \\
\& \text { A1 }
\end{aligned}
\] \& \& Using (a) Equation in \(\sin x\) \\
\hline \& \[
\begin{aligned}
\& 2 \sin x\left(3-\sin x-4 \sin ^{2} x\right)=0 \\
\& {[2 \sin x=0]} \\
\& \\
\& \sin x=0 ;
\end{aligned} \quad \begin{array}{ll}
\& x=180^{\circ} \\
\sin x=0.75 ; \& x=48.6^{\circ}, 131.4^{\circ} \\
\sin x=-1 ; \& x=270^{\circ}
\end{array}
\] \& \begin{tabular}{l}
m1 \\
B1 \\
A1 \\
A1
\end{tabular} \& 7 \& \begin{tabular}{l}
Factorising/solving quadratic in sin \\
Ignore solns outside \(0^{\circ}<x<360^{\circ}\) throughout
\end{tabular} \\
\hline \& Total \& \& 12 \& \\
\hline \multirow[t]{4}{*}{12(a)(i)

(ii)} \& \multirow[t]{4}{*}{$$
\begin{aligned}
& u=x \text { and } \frac{\mathrm{d} v}{\mathrm{~d} x}=\sec ^{2} x \\
& \begin{aligned}
\frac{\mathrm{d} u}{\mathrm{~d} x} & =1 \text { and } v=\tan x \\
\ldots . . & =x \tan x-\int \tan x \mathrm{~d} x \\
& =x \tan x-\ln (\sec x)(+c)
\end{aligned} \\
& \int x \tan ^{2} x \mathrm{~d} x=\int x\left(\sec ^{2} x-1\right) \mathrm{d} x
\end{aligned}
$$} \& M1

A1 \& \& Attempt to use parts formula in the 'correct direction'
PI

\hline \& \& A1 \& \&

\hline \& \& A1 \& 4 \& OE CSO (Condone absence of $+c)$

\hline \& \& M1 \& \& Use of identity $1+\tan ^{2} x=\sec ^{2} x$

\hline
\end{tabular}

Page Break

XMCA2 (cont)

Q	Solution	Marks	Total	Comments
13	$\begin{array}{lr} x=3 t+t^{3} & y=8-3 t^{2} \\ \frac{\mathrm{~d} x}{\mathrm{~d} t}=3+3 t^{2} & \frac{\mathrm{~d} y}{\mathrm{~d} t}=-6 t \end{array}$	M1		Both attempted and at least one correct.
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{-6 t}{3+3 t^{2}}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$		Chain rule.
	At $P(-4,5), \quad t=-1$ At $P(-4,5), \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{6}{3+3}=1$	B1		
	Gradient of normal at P is -1 Eqn of normal at $P: \quad y-5=-1(x+4)$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$		ACF
	$y+x=1$ Normal cuts curve C when $\begin{align*} & 8-3 t^{2}+3 t+t^{3}=1 \\ \Rightarrow & t^{3}-3 t^{2}+3 t+7=0 \\ \Rightarrow & (t+1)\left(t^{2}-4 t+7\right)=0 \tag{*} \end{align*}$	M1 A1 m1		
	$\left(t^{2}-4 t+7\right)=0$ has no real solutions since $(-4)^{2}<4(1)(7)$. $t=-1$ is only real solution of (*) so normal only cuts C at P, where $t=-1$ ie the normal does not cut C again.	M1 E1	11	
	Total		11	

General Certificate of Education June 2010

Pure Core 1

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2010 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme and abbreviations used in marking

M	mark is for method		
m or dM	mark is dependent on one or more M marks and is for method		
A	mark is dependent on M or m marks and is for accuracy		
B	mark is independent of M or m marks and is for method and accuracy		
E	mark is for explanation		
\checkmark or ft or F	follow through from previous incorrect result	MC	mis-copy
CAO	correct answer only	MR	mis-read
CSO	correct solution only	RA	required accuracy
AWFW	anything which falls within	FW	further work
AWRT	anything which rounds to	ISW	ignore subsequent work
ACF	any correct form	FIW	from incorrect work
AG	answer given	BOD	given benefit of doubt
SC	special case	WR	work replaced by candidate
OE	or equivalent	FB	formulae book
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme
$-x$ EE	deduct x marks for each error	G	graph
NMS	no method shown	c	candidate
PI	possibly implied	sf	significant figure(s)
SCA	substantially correct approach	dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.
Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

MPC1

Q	Solution	Marks	Total	Comments
1(a)	$\begin{aligned} & y=\frac{14}{3}-\frac{2}{3} x \\ & \text { Gradient } A B=-\frac{2}{3} \end{aligned}$	M1 A1	2	Attempt at $y=\ldots$ Condone error in rearranging equation
(b)(i)	$y-7=\text { "their grad AB" }(x-3)$	M1		or $2 x+3 y=k$ and $\operatorname{sub} x=3, y=7$ or $y=m x+c, m=$ their grad $A B$ and attempt to find c using $x=3, y=7$
	$y-7=-\frac{2}{3}(x-3) \quad \text { OE }$	A1	2	$2 x+3 y=27, y=-\frac{2}{3} x+9$ etc
(ii)	$m_{1} m_{2}=-1$	M1		or negative reciprocal (stated or used PI)
	$\Rightarrow \operatorname{grad} A D=\frac{3}{2}$	A1 \checkmark		FT their $\operatorname{grad} A B$
	$y-7=\frac{3}{2}(x-3)$	A1		Any correct equation unsimplified
	$\Rightarrow 3 x-2 y+5=0$	A1	4	Integer coefficients; all terms on one side, condone different order or multiples. $\text { eg } 0=4 y-6 x-10$
(c)	$2 x+3 y=14$ and $5 y-x=6$ used with x or y eliminated (generous)	M1		$2(5 y-6)+3 y=14 \text { etc }$
	$\begin{array}{r} x=4, \\ y=2 \end{array}$	$\begin{aligned} & \text { A1 } \\ & \text { A1 } \end{aligned}$	3	$B(4,2)$ full marks NMS
	Total		11	
2(a)	$\begin{aligned} (3-\sqrt{5})^{2} & =9-6 \sqrt{5}+(\sqrt{5})^{2} \\ & =14-6 \sqrt{5} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	Allow one slip in one of these terms M0 if middle term is omitted
(b)	$\frac{(3-\sqrt{5})^{2}}{1+\sqrt{5}} \times \frac{1-\sqrt{5}}{1-\sqrt{5}}$	M1		or $\ldots \times \frac{\sqrt{5}-1}{\sqrt{5}-1}$
	$\begin{array}{r} 14+6 \sqrt{5} \sqrt{5}-6 \sqrt{5}-14 \sqrt{5} \\ (=44-20 \sqrt{5}) \end{array}$	m1		Expanding their numerator (condone one error or omission)
	$($ Denominator $)=-4$	B1		Must be seen as denominator
	$(\text { Answer })=-11+5 \sqrt{5}$	A1	4	Accept "answer $=5 \sqrt{5}-11$ "
	Total		6	

MPC1 (cont)

Q	Solution	Marks	Total	Comments
3(a)(i)	$\begin{aligned} \mathrm{p}(-3) & =(-3)^{3}+7(-3)^{2}+7(-3)-15 \\ & =-27+63-21-15 \end{aligned}$	M1		$\mathrm{p}(-3)$ attempted; NOT long division This line alone implies M1
	$\mathrm{p}(-3)=0 \Rightarrow(x+3$ is) factor	A1	2	$\mathrm{p}(-3)$ shown $=0$ plus statement
(ii)	$\mathrm{p}(x)=(x+3)\left(x^{2}+p x+q\right)$	M1		Full long division, comparing coefficients or by inspection either $p=4$ or $q=-5$
	(Quadratic factor) $\left(x^{2}+4 x-5\right)$	A1		or M1 A1 for either $x-1$ or $x+5$ clearly found using Factor Theorem
	$(\mathrm{p}(x)=)(x+3)(x-1)(x+5)$	A1	3	Must be seen as a product of 3 factors NMS full marks for correct product
				SC B2 for 3 correct factors listed NMS SC B1 for $(x+3)(x-1)()$ or $(x+3)(x+5)()$ or $(x+3)(x+1)(x-5)$
(b)	$\begin{gathered} \mathrm{p}(2)=2^{3}+7 \times 2^{2}+7 \times 2-15 \\ \text { or }(2+3)(2-1)(2+5) \end{gathered}$	M1		NOT long division; must be $\mathrm{p}(2)$ May use "their" product of factors
	$(\text { Remainder })=35$	A1cso	2	
(c)(i)	$\begin{gathered} \mathrm{p}(-1)=-16 ; \mathrm{p}(0)=-15 \\ \Rightarrow \mathrm{p}(-1)<\mathrm{p}(0) \end{gathered}$	B1	1	Values must be evaluated correctly
(ii)	y 4	B1		y - intercept -15 marked or ($0,-15$) stated
		M1		Cubic graph - 1 max, 1 min
	$-5 \quad-3 \ggg$	A1		\sim shape with $-5,-3,1$ marked
	Cannot score M1A0A1 but can score B0M1A1A1	A1	4	Graph correct with minimum point to left of y-axis and going beyond both -5 and 1 Previous A1 must be scored
	Total		12	

MPC1 (cont)

Q	Solution	Marks	Total	Comments
4(a)(i)	$x^{5} \quad 8$			One term correct
	$\frac{x}{5}-\frac{8}{2} x^{2}+9 x$	A1		Another term correct
	5 2	A1		All correct (may have $+c$)
	$\frac{32}{5}-16+18$	m1		$F(2)$ attempted
	$=8 \frac{2}{5}$	A1	5	$\frac{42}{5}, 8.4$
(ii)	Shaded area $=18-$ 'their integral'	M1		PI by 18 - (a)(i) NMS
	$=9 \frac{3}{5}$	A1	2	$\frac{48}{5}, 9.6$ NMS full marks
(b)(i)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=4 x^{3}-8$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$		One term correct All correct (no $+c$ etc)
	$x=1 \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=4-8$	m1		$\operatorname{sub} x=1 \text { into their } \frac{\mathrm{d} y}{\mathrm{~d} x}$
	(Gradient of curve) $=-4$	A1cso	4	No ISW
(ii)	$y-2=-4(x-1) ; \quad y=-4 x+c, c=6$	B1,	1	any correct form ; FT their answer from (b)(i) but must use $x=1$ and $y=2$
	Total		12	

MPC1 (cont)

Q	Solution	Marks	Total	Comments
5(a)	$(x+5)^{2}+(y-6)^{2}=5^{2}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \\ & \text { B1 } \end{aligned}$	3	One term correct LHS LHS all correct RHS correct: condone $=25$
(b)(i)	sub $x=-2, y=2$ into circle equation $3^{2}+(-4)^{2}=25$			Circle equation must be correct
	\Rightarrow lies on circle	B1	1	Must have concluding statement
(ii)	$\operatorname{Grad} P C=-\frac{4}{3}$	B1		$\text { Condone } \frac{4}{-3}$
	$\begin{aligned} & y-6=\text { 'their gradient } P C^{\prime}(x+5) \\ & \text { or } \quad y-2=\text { 'their gradient } P C^{\prime}(x+2) \end{aligned}$	M1		M0 if tangent attempted or incorrect coordinates used
	$\begin{aligned} & y-6=-\frac{4}{3}(x+5) \\ & \text { or } \quad y-2=-\frac{4}{3}(x+2) \end{aligned}$	A1cso	3	Any correct form eg $4 x+3 y+2=0$ $y=-\frac{4}{3} x+c, \quad c=-\frac{2}{3}$
(iii)	$\begin{aligned} P M & =\frac{1}{2} \times \text { radius } \\ & =2.5 \\ P O & =\sqrt{8} \end{aligned}$ P is closer to the point M			Alternative 1
		M1		Attempt at $M\left(-\frac{7}{2}, 4\right)$ with at least one correct coordinate and $P M^{2}$ attempted
		A1cso		$P M^{2}=\frac{9}{4}+4=\frac{25}{4}$
		B1		$P O^{2}=4+4=8$
		E1cso	4	Statement following correct values
				Alternative 2
		(M1)		Attempt at $M\left(-\frac{7}{2}, 4\right)$ with at least one correct coordinate and attempt at vectors or difference of coordinates
		$\begin{gathered} \text { (A1cso } \\ \text {) } \end{gathered}$		$\overrightarrow{P M}=\binom{-1.5}{2} \mathrm{OE}$
		(E1cso)		P is closer to the point M
			(4)	Components of their $\overrightarrow{P M}$ and $\overrightarrow{O P}$ considered - totally independent of M1
	Total		11	

MPC1 (cont)

MPC1 (cont)

Q	Solution	Marks	Total	Comments
7(a)(i)	$2(x-5)^{2}$	B1		$p=5$
	+ 3	B1	2	$q=3$
(ii)	$\begin{aligned} & \text { Stating both }(x-5)^{2} \geqslant 0 \quad \text { and } \quad 3>0 \\ & \Rightarrow 2 x^{2}-20 x+53>0 \text { or } 2(x-5)^{2}+3>0 \end{aligned}$	M1		FT their p \& q, but must have $q>0$
	$\Rightarrow 2 x^{2}-20 x+53=0$ has no real roots	A1cso	2	Must have statement and correct p \& q.
(b)(i)	$b^{2}-4 a c=(k+1)^{2}-4 k(2 k-1)$	M1		Condone one slip (including x is one slip)
	$\begin{array}{r} \qquad=-7 k^{2}+6 k+1 \\ \text { real roots } \Rightarrow b^{2}-4 a c \geqslant 0 \end{array}$	A1		Condone recovery from missing brackets Their discriminant $\geqslant 0$ (in terms of k)
	$-7 k^{2}+6 k+1 \geqslant 0$	B1」		Need not be simplified \& may earn earlier
	$\Rightarrow 7 \mathrm{k}^{2}-6 \mathrm{k}-1 \leqslant 0$	A1cso	4	AG (must see sign change)
(ii)	$(7 k+1)(k-1)$	M1		Correct factors or correct use of formula
	Critical values $k=1,-\frac{1}{7}$	A1		May score M1, A1 for correct critical values seen as part of incorrect final answer with or without working.
	Use of sign diagram or sketch	M1		If previous A1 earned, sign diagram or sketch must be correct for M1
				Otherwise M1 may be earned for an attempt at the sketch or sign diagram using their critical values.
	$-\frac{1}{7} \leqslant k \leqslant 1$	A1	4	$\left(-\frac{1}{7}<k<1\right),\left(k \geqslant-\frac{1}{7} \text { OR } k \leqslant 1\right),$
	Full marks for correct answer NMS			$\left(k \geqslant-\frac{1}{7}, k \leqslant 1\right)$ score M1A1M1A0
	Condone $-\frac{2}{14}$ throughout			Answer only of $k<-\frac{1}{7}, \quad k<1$ etc
	Condone $k \geqslant-\frac{1}{7}$ AND $k \leqslant 1$ for full			values are evident. Answer only of $\frac{1}{7} \leqslant k \leqslant 1$ etc
	Take their final line as their answer.			scores M0, M0 since the critical values are not both correct.
	Total		12	
	TOTAL		75	

General Certificate of Education (A-level) January 2011

Mathematics

MPC1

(Specification 6360)

Pure Core 1

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2011 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Mark Scheme - General Certificate of Education (A-level) Mathematics - Pure Core 1 - January 2011

Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
B	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
Jor ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
- x EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

Mark Scheme - General Certificate of Education (A-level) Mathematics - Pure Core 1 - January 2011
MPC1 (cont)

Mark Scheme - General Certificate of Education (A-level) Mathematics - Pure Core 1 - January 2011
MPC1 (cont)

Q	Solution	Marks	Total	Comments
4(a)(i)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=-1-4 x^{3}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \end{aligned}$		one of these terms correct all correct (no $+c$)
	(When $x=1$, grad $=$) -5	A1cso	3	(Check that $\frac{\mathrm{d} y}{\mathrm{~d} x}$ is actually correct!)
(ii)	$y-12=\text { 'their } \operatorname{grad}^{\prime}(x-1)$	M1		any form of equation through $(1,12)$ and attempt at c if using $y=m x+c$
	$y=-5 x+17 \quad \text { (or } \quad y=17-5 x)$	A1 \checkmark	2	FT their gradient Condone $y=-5 x+c, c=17$ etc
(b)(i)	$14 x-\frac{x^{2}}{2}-\frac{x^{5}}{5}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$		one of these terms correct another term correct all correct (may have $+c$)
	$\begin{aligned} & {[]_{-2}^{1}=} \\ & \left(14-\frac{1}{2}-\frac{1}{5}\right)-\left(-28-2+\frac{32}{5}\right) \end{aligned}$	m1		$F(1)$ and $F(-2)$ attempted
	$=36.9$ OE	A1	5	Condone recovery to this value
(ii)	$\text { Area } \begin{aligned} \Delta=\frac{1}{2} \times 3 \times 12 & \\ & =18 \end{aligned}$	M1		Correct area of triangle unsimplified
	\Rightarrow shaded area $=18.9$	A1cso	2	
	Total		12	

MPC1 (cont)

Q	Solution	Marks	Total	Comments
6(a)(i)	$\begin{aligned} (x+3)^{2}+(y-1)^{2} & \\ & =13 \end{aligned}$	B1 B1	2	$\begin{aligned} & \text { condone }(x--3)^{2} \\ & \text { condone }(\sqrt{13})^{2} \end{aligned}$
(ii)	$\begin{aligned} & x^{2}+6 x+9+y^{2}-2 y+1 \\ & x^{2}+y^{2}+6 x-2 y \\ & -3=0 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	3	attempt to multiply out both of 'their' brackets; must have x and y terms both $m=6$ and $n=-2$ All correct, $p=-3$ and..$=0$
(b)	$\begin{aligned} & x=0 \Rightarrow y^{2}-2 y-3=0 \\ & \Rightarrow(y-3)(y+1)=0 \\ & \quad y=3, y=-1 \\ & \Rightarrow \text { Distance } A B=3+1=4 \end{aligned}$	M1 A1 A1cso	3	putting $x=0 \quad$ PI and attempt to solve or factorise $\begin{array}{rlr} \text { OR Pythagoras } & d^{2}=13-3^{2} & \text { M1 } \\ d & =2 & \text { A1 } \\ \text { distance } & =2 \times 2=4 & \text { A1 } \end{array}$
(c)(i)	$\begin{aligned} &(-5+3)^{2}+(-2-1)^{2}=4+9 \\ &=13 \\ & \Rightarrow D \text { lies on circle } \end{aligned}$	B1	1	Substitution $x=-5, y=-2$ into any correct circle equation convincing verification plus statement
(ii)	$\begin{align*} \operatorname{grad} C D=\frac{1+2}{-3+5} & \\ & =\frac{3}{2} \tag{or1.5} \end{align*}$	M1 A1	2	condone one sign slip $\text { not } \frac{-3}{-2}$
(iii)	Perpendicular gradient $=-\frac{2}{3}$ Tangent has equation $y+2=-\frac{2}{3}(x+5)$	M1 A1	2	ft their grad $C D$ or $m_{1} m_{2}=-1$ stated any form of correct equation eg $2 x+3 y+16=0$ $y=-\frac{2}{3} x+c, c=-\frac{16}{3}$
	Total		13	

Mark Scheme - General Certificate of Education (A-level) Mathematics - Pure Core 1 - January 2011
MPC1 (cont)

Q	Solution	Marks	Total	Comments
7(a)(i)	(-) $(x+5)^{2}$	M1		$q=5$; condone $(-x-5)^{2}$
	$29-(x+5)^{2}$	A1	2	$p=29$ and $q=5$
(ii)	$x=-5$ is line of symmetry	B1 $\sqrt{ }$	1	FT $x=-$ 'their q ' or correct
(b)(i)	$4-10 x-x^{2}=k(4 x-13)$			
	$\Rightarrow x^{2}+4 k x+10 x-13 k-4=0$			Must see both these lines OE
	$\Rightarrow x^{2}+2(2 k+5) x-(13 k+4)=0$	B1	1	AG all correct working and = 0
(ii)	2 distinct roots $\Rightarrow b^{2}-4 a c>0$	B1		stated or used (must be >0)
	$\begin{aligned} & \text { Discriminant }=4(2 k+5)^{2}+4(13 k+4) \\ & 4\left(4 k^{2}+20 k+25+13 k+4\right)>0 \end{aligned}$	M1		condone one slip (may be within formula) or $16 k^{2}+132 k+116>0$
	$\Rightarrow 4 k^{2}+33 k+29>0$	A1	3	AG > 0 must appear before final line
(iii)	$(4 k+29)(k+1)$	M1		correct factors or correct unsimplified quadratic equation formula $\frac{-33 \pm \sqrt{33^{2}-4 \times 4 \times 29}}{8}$
	$k=-\frac{29}{4}, k=-1$	A1		condone $k=-\frac{58}{8},-7.25$ etc but not left with square roots etc as above
$-\frac{29}{4}$		M1		sketch or sign diagram including values
	$k<-\frac{29}{4}, \quad k>-1$ Take their final line as their answer	A1	4	condone use of OR but not AND
	Total		11	
	TOTAL		75	

General Certificate of Education (A-level) June 2011

Mathematics

MPC1

(Specification 6360)

Pure Core 1

Final

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

[^3]Copyright © 2011 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
B	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
Jor ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
-x EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.
Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Solution	Marks	Total	Comments
1(a)	$y=\frac{13}{3}-\frac{7}{3} x$	M1		attempt at $y=a+b x$ or $\frac{\Delta y}{\Delta x}$ with 2 correct points
	$\text { (gradient }=\text {) }-\frac{7}{3}$	A1	2	condone slip in rearranging if gradient is correct
(b)(i)	$y-3=$ 'their $\operatorname{grad}^{\prime}(x-1)$	M1		or $\quad 7 x+3 y=k$ and attempt at k using $x=-1$ and $y=3$ or $y=($ their $m) x+c$ and attempt at c using $x=-1$ and $y=3$
	$y-3=-\frac{7}{3}(x+1)$ or $7 x+3 y=2$ or $y=-\frac{7}{3} x+c, \quad c=\frac{2}{3}$	A1cso	2	correct equation in any form and replacing - - with + sign
(ii)	$(4,-5)$	B1,B1	2	$x=4, y=-5$ withhold if clearly from incorrect working
(c)	$\begin{aligned} & 7 x+3 y=13 \text { and } 3 x+2 y=12 \\ & \Rightarrow \text { equation in } x \text { or } y \text { only } \end{aligned}$	M1		must use correct pair of equations and attempt to eliminate y (or x)
	$\begin{aligned} & x=-2 \\ & y=9 \end{aligned}$	$\begin{aligned} & \text { A1 } \\ & \text { A1 } \end{aligned}$	3	
	Total		9	

Q	Solution	Marks	Total	Comments
3(a)	$\left(\frac{d V}{d t}=\right) \frac{3 t^{2}}{4}-3$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	2	one of these terms correct all correct (no $+c$ etc)
(b)(i)	$\begin{aligned} t=1 \Rightarrow \frac{\mathrm{~d} V}{\mathrm{~d} t} & =\frac{3}{4}-3 \\ & =-2 \frac{1}{4} \end{aligned}$	M1 A1cso	2	substituting $t=1$ into their $\frac{\mathrm{d} V}{\mathrm{~d} t}$ (-2.25 OE) BUT must have $\frac{\mathrm{d} V}{\mathrm{~d} t}$ correct
(ii)	Volume is decreasing when $t=1$ $\text { because } \frac{\mathrm{d} V}{\mathrm{~d} t}<0$	E1 \checkmark	1	must have used $\frac{\mathrm{d} V}{\mathrm{~d} t}$ in (b)(i) or starts again must state that $\frac{\mathrm{d} V}{\mathrm{~d} t}<0$ (or $-2 \frac{1}{4}<0 \mathrm{etc}$) ft increasing plus explanation if their $\frac{\mathrm{d} V}{\mathrm{~d} t}>0$
(c)(i)	$\begin{gathered} \left(\frac{\mathrm{d} V}{\mathrm{~d} t}=0 \Rightarrow\right) \frac{3 t^{2}}{4}-3=0 \\ \Rightarrow t^{2}=4 \\ t=2 \end{gathered}$	M1 A1 $\sqrt{ }$ A1cso	3	PI by "correct" equation being solved obtaining $t^{n}=k$ correctly from their $\frac{\mathrm{d} V}{\mathrm{~d} t}$ withhold if answer left as $t= \pm 2$
(ii)	$\begin{aligned} & \left(\frac{\mathrm{d}^{2} V}{\mathrm{~d} t^{2}}=\right) \frac{3 t}{2} \\ & \begin{aligned} \text { When } t=2, \frac{\mathrm{~d}^{2} V}{\mathrm{~d} t^{2}} & =3 \text { or } \frac{\mathrm{d}^{2} V}{\mathrm{~d} t^{2}}>0 \\ & \Rightarrow \text { minimum } \end{aligned} \end{aligned}$	B1」 M1 A1cso	3	(condone unsimplified) ft their $\frac{\mathrm{d} V}{\mathrm{~d} t}$ ft their $\frac{\mathrm{d}^{2} V}{\mathrm{~d} t^{2}}$ and value of t from (c)(i)
	Total		11	

Q	Solution	Marks	Total	Comments
4(a)	$\begin{aligned} & (x+2.5)^{2} \\ & q=7-\text { 'their' } p^{2} \end{aligned}$	B1 M1		$p=\frac{5}{2}$ unsimplified attempt at $q=7-$ 'their' p^{2} $q=7-\frac{25}{4}=\frac{3}{4}$
	$(x+2.5)^{2}+0.75$ mark their final line as their answer	A1	3	
(b)(i)	$x=-$ 'their' p or $y=$ 'their' q	M1		or $x=-\frac{5}{2}$ cao found using calculus
	$\left(-\frac{5}{2}, \frac{3}{4}\right)$	A1cao	2	condone correct coordinates stated $x=-2.5, \quad y=0.75$
(ii)	$x=-\frac{5}{2}$	B1 \checkmark	1	correct or ft " $x=-$ 'their' p "
(iii)		B1		y intercept $=7$ stated or seen in table as $y=7$ when $x=0$ or 7 marked as intercept on y-axis (any graph)
		M1		\cup shape
(c)		A1	3	vertex above x-axis in correct quadrant and parabola extending beyond y-axis into first quadrant
	Translation	E1		and no other transformation
	through $\left[\begin{array}{c}-\frac{5}{2} \\ \frac{3}{4}\end{array}\right]$	M1		ft either 'their' $-p$ or 'their' q or one component correct for M1
		A1cao	3	both components correct for A1; may describe in words or use a vector
	Total		12	

Q	Solution	Marks	Total	Comments
5(a)	$\begin{aligned} \mathrm{p}(3) & =3^{3}-2 \times 3^{2}+3(=27-18+3) \\ & =12 \end{aligned}$	$\begin{gathered} \mathrm{M} 1 \\ \text { A1 } \end{gathered}$	2	$\mathrm{p}(3)$ attempted; not long division
(b)	$\begin{aligned} & \mathrm{p}(-1)=(-1)^{3}-2(-1)^{2}+3 \\ & \mathrm{p}(-1)=-1-2+3=0 \Rightarrow x+1 \text { is a factor } \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1cso } \end{gathered}$	2	$\mathrm{p}(-1)$ attempted; not long division correctly shown $=0$ plus statement
(c)(i)	Quadratic factor $\left(x^{2}-3 x+3\right)$	M1		$b=-3$ or $c=3$ by inspection or full long division attempt or comparing coefficients
	$(\mathrm{p}(x)=)(x+1)\left(x^{2}-3 x+3\right)$	A1	2	must see correct product
(ii)	Discriminant of quadratic $b^{2}-4 a c=(-3)^{2}-4 \times 3$	M1		'their' discriminant considered possibly within quadratic equation formula
	$\left.\begin{array}{l} b^{2}-4 a c<0 \Rightarrow \text { no real roots from quadratic } \\ \Rightarrow \text { only one real root } \end{array}\right\}$	A1cso	2	
	Total		8	
6(a)	$\int_{-1}^{1}\left(x^{3}-2 x^{2}+3\right) \mathrm{d} x$			
	$=\left[\frac{x^{4}}{4}-\frac{2 x^{3}}{3}+3 x\right]_{-1}^{1}$	M1 A1 A1		one term correct another term correct all correct (condone $+c$)
	$\begin{aligned} & =\left(\frac{1}{4}-\frac{2}{3}+3\right)-\left(\frac{1}{4}+\frac{2}{3}-3\right) \\ & =4 \frac{2}{3} \end{aligned}$	B1」 A1cso	5	'their' $F(1)-F(-1)$ with $(-1)^{3}$ etc evaluated correctly but must have earned M1 $\frac{14}{3}, \frac{56}{12}$ etc but combined as single fraction
(b)	$\text { Area of } \begin{aligned} \Delta & \left(=\frac{1}{2} \times 2 \times 2\right) \\ & =2 \end{aligned}$	B1		PI
	Shaded region has area $4 \frac{2}{3}-2$	M1		\pm their (a) \pm their Δ area
	$=2 \frac{2}{3}$	A1cso	3	$\frac{8}{3}, \frac{32}{12}$ etc but combined as single fraction
	Total		8	

MPC1 (cont)

Q	Solution	Marks	Total	Comments
8(a)	$\begin{aligned} (x-3)^{2}+(y+8)^{2} & \\ & =100 \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	2	accept $(y--8)^{2}$ condone RHS $=10^{2}$ or $k=10^{2}$ d
(b)	$\begin{aligned} & y=0 \Rightarrow \text { 'their' }(x-a)^{2}+b^{2}=k \\ & (x-3)^{2}=36 \text { or } x^{2}-6 x-27(=0) \quad(\mathrm{PI}) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$		Alternative
	$\Rightarrow x=-3,9$	A1	3	$\begin{array}{lll} \left(d^{2}=\right) 10^{2}-8^{2} & \text { M1 } & \\ d^{2}=36 & \text { A1 } & \text { or } d=6 \\ \Rightarrow x=-3,9 & \text { A1 } & \end{array}$
(c)	Line $C A$ has gradient $-\frac{2}{5}$	M1		
(d)(i)	$\begin{aligned} & C A \text { has equation }(y+8)=-\frac{2}{5}(x-3) \\ & \qquad 2 x+5 y+34=0 \end{aligned}$	A1 A1cso	3	any form of correct equation eg $\quad y=-\frac{2}{5} x+c, \quad c=-\frac{34}{5}$ integer coefficients - all terms on 1 side
	$\begin{align*} & \text { their }(x-3)^{2}+(2 x+1+8)^{2} \text { or } \\ & x^{2}+(2 x+1)^{2}-6 x+16(2 x+1) \tag{+73} \end{align*}$			substituting $y=2 x+1$ correctly into LHS of "their" circle equation and
	$x^{2}-6 x+9+4 x^{2}+36 x+81=100$	M1		attempt to expand in terms of x only
	$\begin{aligned} & \text { or } x^{2}+4 x^{2}+4 x+1-6 x+32 x+16+73=100 \\ & \Rightarrow 5 x^{2}+30 x-10=0 \end{aligned}$	A1		any correct equation (with brackets expanded) must see this line or equivalent
	$\Rightarrow x^{2}+6 x-2=0$	A1cso	3	AG; all algebra must be correct
(ii)	$(x+3)^{2}=11$	M1		or correct use of formula
				must get as far as $x=\frac{-6 \pm \sqrt{44}}{2}$
	$x=-3 \pm \sqrt{11}$	A1cso	2	exactly this
	Total		13	
	TOTAL		75	

General Certificate of Education (A-level) January 2012

Mathematics

MPC1

(Specification 6360)

Pure Core 1

Final

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk
Copyright © 2012 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
B	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
Jor ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
-x EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.
Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

MPC1

MPC1 (cont)

Q	Solution	Marks	Total	Comments
2(a)	$(x-6)(x+2)$	B1	1	ISW for $x=6, x=-2$ etc
(b)				
	$\left.\begin{array}{l} x=-2 \\ x=6 \end{array}\right\}$	B1 \checkmark		correct x values or FT 'their' factors (x-intercepts stated or marked on sketch) may be seen in (a)
	$y=-12$	B1		(stated or -12 marked on sketch)
	\cup - shaped curve	M1		approximately
	"correct" shape in all 4 quadrants with minimum to right of y-axis	A1	4	
(c)(i)	$(x-2)^{2}$	M1		$p=2$
	$(x-2)^{2}-16$	A1	2	$p=2$ and $q=16$
(ii)	(Minimum value is) - 16	B1 \checkmark	1	FT ' their $-q$ '
(d)	Replacing each x by $x+3$ $\mathbf{O R}$ adding 2 to their quadratic	M1		in original equation or 'their' completed square or factorised form or replacing y by $y-2$
	$\left.\begin{array}{rl} y=\left[(x+3)^{2}\right. & -4(x+3)-12]+2 \\ \text { or } & y=(x+1)^{2}-14 \\ \text { or } & y=x^{2}+2 x-13 \\ \text { or } & y-2=(x-3)(x+5) \end{array}\right\}$	A1	2	OE any correct equation in x and y unsimplified
	Total		10	

Q	Solution	Marks	Total	Comments
3(a)(i)	$(3 \sqrt{2})^{2}=18$	B1	1	
(ii)	$\begin{aligned} (3 \sqrt{2}-1)^{2} & =\text { 'their } 18 '-3 \sqrt{2}-3 \sqrt{2}+1 \\ & =18-3 \sqrt{2}-3 \sqrt{2}+1 \end{aligned}$	M1 A1		FT their $(3 \sqrt{2})^{2}$ $(=19-6 \sqrt{2})$
	$(3+\sqrt{2})^{2}=9+3 \sqrt{2}+3 \sqrt{2}+2$	B1		$(=11+6 \sqrt{2})$
	\Rightarrow Sum $=30$	A1cso	4	
(b)	$\frac{4 \sqrt{5}-7 \sqrt{2}}{2 \sqrt{5}+\sqrt{2}} \times \frac{2 \sqrt{5}-\sqrt{2}}{2 \sqrt{5}-\sqrt{2}}$	M1		
	$\begin{aligned} & \text { Numerator }= \\ & 8(\sqrt{5})^{2}-4 \sqrt{5} \sqrt{2}-14 \sqrt{5} \sqrt{2}+7(\sqrt{2})^{2} \end{aligned}$	m1		correct unsimplified $\quad(=54-18 \sqrt{10})$
	$\begin{aligned} \text { Denominator } & =(2 \sqrt{5})^{2}-(\sqrt{2})^{2} \\ & =18 \end{aligned}$	B1		must be seen as denominator
	\Rightarrow Answer $=3-\sqrt{10}$	A1cso	4	
	Total		9	

Q	Solution	Marks	Total	Comments
4(a)(i)	$\left(\frac{\mathrm{d} y}{\mathrm{~d} x}=\right) 5 x^{4}-6 x+1$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	3	one term correct another term correct all correct (no $+c$ etc)
(ii)	$\left(\frac{\mathrm{d}^{2} y}{\mathrm{dx}}=\right) 20 x^{3}-6$	B1J	1	FT 'their' $\frac{\mathrm{d} y}{\mathrm{~d} x}$
(b)	$\begin{aligned} & x=-1 \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=5(-1)^{4}-6(-1)+1 \quad(=12) \\ & \Rightarrow y=12(x+1) \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1cso } \end{gathered}$	2	must sub $x=-1$ into 'their' $\frac{\mathrm{d} y}{\mathrm{~d} x}$ any correct form with $(x--1)$ simplified condone $y=12 x+c, \quad c=12$
(c)	$x=1 \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=5-6+1$	M1		$\operatorname{sub} x=1 \text { into their } \frac{\mathrm{d} y}{\mathrm{~d} x}$
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=0 \Rightarrow$ stationary point when $x=1, \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=14$	A1cso		shown $=0$ plus correct statement or $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=20-6>0$
	$\Rightarrow(B$ is a) minimum (point)	E1	3	\Rightarrow (B is a) minimum (point) must have correct $\frac{\mathrm{d} y}{\mathrm{~d} x}$ and $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$ for E1
(d)(i)	$\frac{x^{6}}{6}-\frac{3 x^{3}}{3}+\frac{x^{2}}{2}+5 x$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$		one term correct another term correct all correct (may have $+c$)
	$\left[\frac{1}{6}-1+\frac{1}{2}+5\right]-\left[\frac{1}{6}+1+\frac{1}{2}-5\right]$	m1		'their' $\mathrm{F}(1)-\mathrm{F}(-1)$ with powers of 1 and -1 evaluated correctly
	$=8$	A1cso	5	
(ii)	'their answer to part (i)' - 2	M1		
	\Rightarrow Area $=6$	A1cso	2	
	Total		16	

Q	Solution	Marks	Total	Comments
5(a)	$\mathrm{p}(-2)=(-2)^{3}+(-2)^{2} c+(-2) d-12$	M1		$\mathrm{p}(-2)$ attempted or long division by $x+2$ as far as remainder
	'their' $-8+4 c-2 d-12=-150$	m1		putting expression for remainder $=-150$
	$\Rightarrow 2 c-d+65=0$	A1cso	3	AG terms all on one side in any order (check that there are no errors in working)
(b)	$\mathrm{p}(3)=3^{3}+3^{2} c+3 d-12$	M1		$\mathrm{p}(3)$ attempted or long division by $x-3$ as far as remainder
	$9 c+3 d+15=0$	A1	2	any correct equation with terms collected $\text { eg } 3 c+d=-5$
(c)	$\left.\begin{array}{r} 2 c-d+65=0 \\ 3 c+d+5=0 \end{array}\right\} \Rightarrow 5 c=-70$	M1		Elimination of c or d
	$\Rightarrow c=-14, d=37 \mathrm{OE}$	$\begin{aligned} & \text { A1 } \\ & \text { A1 } \\ & \hline \end{aligned}$	3	value of c or d correct unsimplified both c and d correct unsimplified
	Total		8	
6(a)	Sides are x and $x+4$			
	$\left.\begin{array}{rl} & \text { or } \quad 2(2 x+4)>30 \\ & \text { or } 4 x+8>30 \end{array}\right\}$			must see this line OE
	$\Rightarrow 2 x>11$	B1	1	AG (be convinced) condone $11<2 x$
(b)	$x(x+4)<96$			must see this line OE
	$\Rightarrow x^{2}+4 x-96<0$	B1	1	AG
(c)	$(x+12)(x-8)$	M1		correct factors or correct quadratic equation formula
	Critical values 8, -12	A1		
		M1		sketch or sign diagram
	$\Rightarrow-12<x<8$	A1cso	4	$\begin{aligned} \text { accept } & x<8 \text { AND } x>-12 \\ \text { but not } & x<8 \text { OR } x>-12 \\ \text { nor } & x<8, x>-12 \end{aligned}$
(d)	$5 \frac{1}{2}<x<8$	B1	1	
	Total		7	

Q	Solution	Marks	Total	Comments
7(a)	$(x+7)^{2}+(y-5)^{2}$	M1		one term correct ; condone ($x--7)^{2}$
		A1		both terms correct with squares and plus sign between terms
	$(x+7)^{2}+(y-5)^{2}=5^{2}$	A1cao	3	condone 25 for 5^{2}
(b)(i)	$C(-7,5)$	B1,		correct or FT 'their' circle equation
(ii)	$r=5$	B1,	2	correct or FT 'their' $r^{2}>0$ condone $\sqrt{25}$ etc but not $\pm \sqrt{25}$
(c)	must draw axes	M1		freehand circle with C correct or FT 'their C ' for quadrant of centre
		A1	2	circle touching x-axis at -7 with -7 marked (need not show 5 on y-axis) but circle must not touch y-axis
(d)(i)	$x^{2}+(k x+6)^{2}+14 x-10(k x+6)+49=0$			clear attempt to sub $y=k x+6$ into original or 'their' circle equation ...
	$\begin{array}{r} x^{2}+k^{2} x^{2}+12 k x+36+14 x \\ -10 k x-60+49=0 \end{array}$	M1		..and attempt to multiply out
	$\begin{aligned} & \left(1+k^{2}\right) x^{2}+2 k x+14 x+25=0 \\ & \quad \Rightarrow\left(k^{2}+1\right) x^{2}+2(k+7) x+25=0 \end{aligned}$	A1cso	2	AG condone $x^{2}\left(1+k^{2}\right)+2 x(7+k)+\ldots$ etc
(ii)	Equal roots ' $b^{2}-4 a c=0$ '	B1		allow statement alone if discriminant in terms of k attempted
	$\begin{aligned} & {[2(k+7)]^{2}-4 \times 25\left(k^{2}+1\right)} \\ & 4\left\{k^{2}+14 k+49-25 k^{2}-25\right\}=0 \\ & -24 k^{2}+14 k+24=0 \end{aligned}$	M1		discriminant (condone one slip)
	$\Rightarrow 12 k^{2}-7 k-12=0$	A1	3	AG all working correct but $=0$ must appear before last line
(iii)	$(4 k+3)(3 k-4)$	M1		correct factors or correct use of $7 \pm \sqrt{49+576}$
				formula as far as $k=\frac{24}{}$
	$\Rightarrow k=-\frac{3}{4}, k=\frac{4}{3} \quad \mathrm{OE}$ are values of k for which line is a tangent	A1	2	
	Total		14	
	TOTAL		75	

General Certificate of Education (A-level) June 2012

Mathematics

MPC1

(Specification 6360)

Pure Core 1

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

[^4]Copyright © 2012 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
B	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
Jor ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
-x EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.
Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

MPC1

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Marks \& Total \& Comments \\
\hline 1 \& \[
\begin{aligned}
\& \frac{5 \sqrt{3}-6}{2 \sqrt{3}+3} \times \frac{2 \sqrt{3}-3}{2 \sqrt{3}-3} \\
\& \text { (Numerator }=\text {) } 30-15 \sqrt{3}-12 \sqrt{3}+18 \\
\& \text { (Denominator }=12-9=\text {) } \\
\& \left(\frac{48-27 \sqrt{3}}{3}\right)=16-9 \sqrt{3}
\end{aligned}
\] \& \begin{tabular}{l}
M1 \\
m1 \\
B1 \\
A1
\end{tabular} \& 4 \& \begin{tabular}{l}
correct \((=48-27 \sqrt{3})\) \\
must be seen as denominator \\
CSO; accept \(16+-9 \sqrt{3}\)
\end{tabular} \\
\hline \& Total \& \& 4 \& \\
\hline 2(a)(i) \& \[
\begin{aligned}
\& y=\frac{4}{3} x-\frac{7}{3} \\
\& \Rightarrow \operatorname{grad} A B=\frac{4}{3}
\end{aligned}
\] \& M1

A1 \& 2 \& | $y= \pm \frac{4}{3} x+k$ |
| :--- |
| or $\frac{\Delta y}{\Delta x}$ with 2 correct points condone slip in rearranging if gradient is correct; condone 1.33 or better |

\hline (ii) \& | $y=\text { 'their grad' } x+c$ |
| :--- |
| and attempt to use $x=3, y=-5$ | \& M1 \& \& | or $y--5=$ 'theirgrad $A B^{\prime}(x-3)$ |
| :--- |
| or $4 x-3 y=k$ and attempt to find k using $x=3$ and $y=-5$ |

\hline \& $$
\left.\begin{array}{l}
y+5=\frac{4}{3}(x-3) \\
\text { or } y=\frac{4}{3} x-\frac{27}{3}
\end{array}\right\}
$$

\[
4 x-3 y=27

\] \& | A1 |
| :--- |
| A1 | \& 3 \& | correct equation in any form but must simplify -- to + |
| :--- |
| integer coefficients in required form eg $-8 x+6 y=-54$ |

\hline (b) \& $$
\begin{gathered}
4 x-3 y=7 \text { and } 3 x-2 y=4 \\
\Rightarrow 8 x-9 x=14-12 \text { etc } \\
x=-2 \\
y=-5
\end{gathered}
$$ \& \[

$$
\begin{aligned}
& \text { M1 } \\
& \text { A1 } \\
& \text { A1 }
\end{aligned}
$$
\] \& 3 \& must use correct pair of equations and attempt to eliminate x or y (generous) or $D(-2,-5)$

\hline (c) \& $$
\begin{aligned}
& 4(k-2)-3(2 k-3)=7 \\
& \begin{array}{l}
4 k-8-6 k+9=7 \\
\Rightarrow k=-3
\end{array}
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \text { M1 } \\
& \text { A1 }
\end{aligned}
$$

\] \& 2 \& | sub $x=k-2, y=2 k-3$ into $4 x-3 y=7$ |
| :--- |
| and attempt to multiply out with all k terms on one side (condone one slip) |

\hline \& Total \& \& 10 \&

\hline
\end{tabular}

MPC1

Q	Solution	Marks	Total	Comments
3(a)(i)	$\mathrm{p}(-1)=(-1)^{3}+2(-1)^{2}-5(-1)-6$	M1		$\mathrm{p}(-1)$ attempted not long division
(ii)	$\mathrm{p}(-1)=-1+2+5-6=0 \Rightarrow x+1$ is a factor	A1	2	CSO; correctly shown $=0$ plus statement
	Quad factor in this form: $\left(x^{2}+b x+c\right)$	M1		long division as far as constant term or comparing coefficients, or $b=1$ or $c=-6$ by inspection
	$x^{2}+x-6$	A1		correct quadratic factor
	$[\mathrm{p}(x)=](x+1)(x+3)(x-2)$	A1	3	must see correct product
(b)	$p(0)=-6 ; p(1)=-8$	M1		both $\mathrm{p}(0)$ and $\mathrm{p}(1)$ attempted and at least one value correct
	$\Rightarrow \mathrm{p}(0)>\mathrm{p}(1)$	A1	2	AG both values correct plus correct statement involving $p(0)$ and $p(1)$
(c)	${ }^{\prime} \uparrow$			
		A1		\checkmark with $-3,-1,2$ marked
		A1	3	correct with minimum to right of y-axis AND going beyond -3 and 2
	Total		10	

Q	Solution	Marks	Total	Comments
4(a)(i)	$\begin{gathered} 3 x^{2}+3 x^{2}+x y+x y+3 x y+3 x y \\ 6 x^{2}+8 x y=32 \end{gathered}$	M1		correct expression for surface area $2\left(3 x^{2}+x y+3 x y\right)=32 \text { etc }$
	$\Rightarrow 3 x^{2}+4 x y=16$	A1	2	AG be convinced
(ii)	$\begin{aligned} (V & =) 3 x^{2} y \quad \text { OE } \\ & =3 x\left(\frac{16-3 x^{2}}{4}\right) \text { or }=3 x^{2}\left(\frac{16-3 x^{2}}{4 x}\right) \end{aligned}$	M1		correct volume in terms of x and y OE
	$=12 x-\frac{9 x^{3}}{4}$	A1	2	CSO AG be convinced that all working is correct
(b)	$\left(\frac{\mathrm{d} V}{\mathrm{~d} x}=\right) 12-\frac{27}{4} x^{2}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	2	one of these terms correct all correct with 9×3 evaluated (no $+c$ etc)
(c)(i)	$\begin{aligned} & x=\frac{4}{3} \Rightarrow \frac{\mathrm{~d} V}{\mathrm{~d} x}=12-\frac{27}{4} \times\left(\frac{4}{3}\right)^{2} \\ & \frac{\mathrm{~d} V}{\mathrm{~d} x}=12-\frac{27}{4} \times \frac{16}{9}=12-12 \end{aligned}$	M1		attempt to sub $x=\frac{4}{3}$ into 'their' $\frac{\mathrm{d} V}{\mathrm{~d} x}$ or $12-\frac{432}{36}=12-12$ or $12-\frac{48}{4}=0$ etc
	$\frac{\mathrm{d} V}{\mathrm{~d} x}=0 \Rightarrow \text { stationary value }$	A1	2	CSO; shown $=0$ plus statement
(ii)	$\frac{\mathrm{d}^{2} V}{\mathrm{~d} x^{2}}=-\frac{27 x}{2} \quad O E$	B1」		FT for 'their' $\frac{\mathrm{d} V}{\mathrm{~d} x}=a+b x^{2}$
	when $x=\frac{4}{3}, \frac{\mathrm{~d}^{2} V}{\mathrm{~d} x^{2}}<0 \Rightarrow$ maximum	E1 \checkmark	2	or sub of $x=\frac{4}{3}$ into 'their' $\frac{\mathrm{d}^{2} V}{\mathrm{~d} x^{2}}$ \Rightarrow maximum
	$\left(\text { FT "minimum" if their } \frac{\mathrm{d}^{2} V}{\mathrm{~d} x^{2}}>0\right)$			
	Total		10	

MPC1

Q	Solution	Marks	Total	Comments
5(a)(i)	$\left(x-\frac{3}{2}\right)^{2}$	M1		or $p=1.5$ stated
	$\left(x-\frac{3}{2}\right)^{2}+\frac{11}{4}$ Mark their final line as their answer	A1	2	$(x-1.5)^{2}+2.75$
(ii)	$x=\frac{3}{2}$	B1 \checkmark	1	correct or FT their " $x=p$ "
(b)(i)	$x^{2}-3 x+5=x+5 \Rightarrow x^{2}=4 x$	M1		eliminating x or y and collecting like terms (condone one slip) $\begin{aligned} & \text { or }(y-5)^{2}-3(y-5)+5=y \\ & \Rightarrow y^{2}-14 y+45=0 \end{aligned}$
	$(x \neq 0) \quad \Rightarrow x=4$	A1		
	$y=9$	A1	3	
(ii)	$\frac{x^{3}}{3}-\frac{3 x^{2}}{2}+5 x(+c)$	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { A1 } \end{gathered}$	3	one of these terms correct another term correct all correct (need not have $+c$)
(iii)	$[]_{0}^{4}=\frac{4^{3}}{3}-3 \times \frac{4^{2}}{2}+5 \times 4$	M1		must have earned M1 in part(b)(ii) $F\left(\right.$ their $\left.x_{B}\right)\{-F(0)\}$ "correctly sub'd"
	$=17 \frac{1}{3}$	A1		$\left(\frac{64}{3}-24+20=\right) \frac{52}{3}$ or $\frac{104}{6}$ etc condone 17.3 but not $16{ }_{3}^{4}$ etc
	$\text { Area trapezium }=\frac{1}{2}\left(x_{B}\right)\left(5+y_{B}\right)$	B1 \checkmark		FT their numerical values of x_{B}, y_{B} Area $=\frac{1}{2} \times 4 \times 14(=28)$
	Area of shaded region $=28-17 \frac{1}{3}$			
	$=10 \frac{2}{3}$	A1	4	CSO; $\frac{32}{3}$, accept 10.7 or better
	Total		13	

MPC1

Q	Solution	Marks	Total	Comments
6(a)	$(x-5)^{2}+(y-8)^{2}$	B1		
	$=25$	B1	2	condone 5^{2}
(b)(i)	$\begin{gathered} (2-5)^{2}+(12-8)^{2} \\ =9+16=25 \end{gathered}$			or $A C^{2}=3^{2}+4^{2}$ hence $A C=5$; (also radius $=5$)
	$\Rightarrow A \text { lies on circle }$ (must have concluding statement and circle equation correct if using equation)	B1	1	CSO $(\Rightarrow$ radius $=A C) \Rightarrow A$ lies on circle (must have concluding statement \& RHS of circle equation correct or $r=5$ stated if Pythagoras is used)
(ii)	$\operatorname{grad} A C=-\frac{4}{3}$	B1		
	Gradient of tangent is $\frac{3}{4}$	B1 \checkmark		FT their $-1 /$ grad $A C$
	$y-12=$ 'their tangent grad' $(x-2)$	M1		or $y=$ 'their tangent grad' $x+c$ \& attempt to find c using $x=2, y=12$
	$y-12=\frac{3}{4}(x-2) \quad$ or $y=\frac{3}{4} x+\frac{21}{2}$ etc	A1		correct equation in any form
	$3 x-4 y+42=0$	A1	5	CSO; must have integer coefficients with all terms on one side of equation accept $0=8 y-6 x-84$ etc
(c)(i)	$\left(C M^{2}=\right) \quad(7-5)^{2}+(12-8)^{2}$	M1		or $\left(C M^{2}=\right) 20$
	$(\Rightarrow C M=\sqrt{20}) \quad \Rightarrow(C M=) \quad 2 \sqrt{5}$	A1	2	
(ii)	$P M^{2}=P C^{2}-C M^{2}=25-20$	M1		Pythagoras used correctly eg $d^{2}+(2 \sqrt{5})^{2}=5^{2}$
	$\Rightarrow P M=\sqrt{5}$ Area $\triangle P C Q=\sqrt{5} \times 2 \sqrt{5}$	A1		
		A1	3	CSO
	Total		13	

MPC1

Q	Solution	Marks	Total	Comments
7(a)(i)	$\left.\begin{array}{l} \text { (Increasing } \Rightarrow) \frac{\mathrm{d} y}{\mathrm{~d} x}>0 \\ 20 x-6 x^{2}-16>0 \end{array}\right\} \text { either } \begin{aligned} & \Rightarrow 6 x^{2}-20 x+16<0 \\ & \text { or } \quad \text { (2) }\left(10 x-3 x^{2}-8\right)>0 \end{aligned}$	M1		correct interpretation of y increasing must see at least one of these steps before final answer for A1
	$\Rightarrow 3 x^{2}-10 x+8<0$	A1	2	CSO AG no errors in working
(ii)	$(3 x-4)(x-2)$ CVs are $\frac{4}{3}$ and 2	M1 A1		correct factors or correct use of quadratic equation formula as far as $\frac{10 \pm \sqrt{4}}{6}$ condone $\frac{8}{6}$ and $\frac{12}{6}$ here but not in final line
		M1		sketch or sign diagram
	$\frac{4}{3}<x<2$ Mark their final line as their answer	A1	4	$\begin{aligned} & \text { or } 2>x>\frac{4}{3} \\ & \text { accept } x<2 \text { AND } x>\frac{4}{3} \\ & \text { but not } x<2 \text { OR } x>\frac{4}{3} \\ & \text { nor } x<2, x>\frac{4}{3} \end{aligned}$

MPC1

Q	Solution	Marks	Total	Comments
7(b)(i)	$x=2 ;\left(\frac{\mathrm{d} y}{\mathrm{~d} x}=\right) 40-24-16$	M1	2	sub $x=2$ into $\frac{\mathrm{d} y}{\mathrm{~d} x}$ and simplify terms
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=0 \Rightarrow$ tangent at P is parallel to the x-axis	A1		must be all correct working plus statement
	$\begin{aligned} & \begin{array}{l} x=3 ; \frac{\mathrm{d} y}{\mathrm{~d} x}=20 \times 3-6 \times 3^{2}-16 \\ \quad(=60-54-16) \quad=-10 \end{array} \\ & \text { Gradient of normal }=\frac{1}{10} \\ & \text { Normal: }(y--1)=\text { 'theirgrad' }(x-3) \end{aligned}$	M1 A1		must attempt to sub $x=3$ into $\frac{\mathrm{d} y}{\mathrm{~d} x}$
		A1 \checkmark		$\frac{-1}{\text { "their }-10 "}$
		m1		normal attempted with correct coordinates
	$y+1=\frac{1}{10}(x-3)$	A1		used and gradient obtained from their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ value any correct form, eg $10 y=x-13$ but must simplify - - to +
	(Equation of tangent at P is) $y=3$	B1		
	$x=43$	A1	7	$\mathrm{CSO} ; \Rightarrow R(43,3)$
	Total		15	
	TOTAL		75	

General Certificate of Education (A-level) January 2013

Mathematics

MPC1

(Specification 6360)

Pure Core 1

Final

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

[^5]Copyright © 2013 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
B	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
Jor ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
-x EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.
Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

MPC1

Q	Solution	Marks	Total	Comments
1(a) (i)	$21+5 k=1$			condone $3 \times 7+5 k=1$
	$\Rightarrow k=-4$	B1	1	AG condone $y=-4$
(ii)	$(x=) 2$ $(y=)-1$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	2	midpoint coords are (2, -1)
(b)	$y=\frac{1}{5}-\frac{3}{5} x$	M1		obtaining $y=a \pm \frac{3}{5} x$ or $\frac{\Delta y}{\Delta x}=\frac{-4-2}{7-3}$ or $\frac{-1-2}{2--3}$ or $\frac{-4--1}{7-2}$ condone one sign error in expression
	$\text { (Gradient } A B=\text {) }-\frac{3}{5}$	A1	2	allow $-0.6, \frac{6}{-10}$ etc for A1 \& condone error in rearranging if gradient is correct .
(c)	$\text { Perp grad }=\frac{5}{3}$	M1		-1/ "their" grad $A B$
	$\left.\begin{array}{c} y-2=\frac{5}{3}(x+3) \\ \text { or } \quad y=\frac{5}{3} x+c, \quad c=7 \quad \text { etc } \end{array}\right]$	A1		correct equation in any form (must simplify $x--3$ to $x+3$ or c to a single term equivalent to 7)
	$5 x-3 y+21=0$	A1	3	or any multiple of this with integer coefficients -terms in any order but all terms on one side of equation
(d)	$\begin{aligned} 3 x+5 y & =1 & \text { and } & & 5 x+8 y=4 \\ \Rightarrow P x & =Q & & \text { or } & R y=S \end{aligned}$	M1		must use correct pair of equations and attempt to eliminate y (or x) (generous)
	$x=12$ $y=-7$	$\begin{aligned} & \text { A1 } \\ & \text { A1 } \end{aligned}$	3	$(12,-7)$
	Total		11	

MPC1 (cont)

Q	Solution	Marks	Total	Comments
2(a)	$\left(\frac{\mathrm{d} y}{\mathrm{~d} t}=\right) \frac{4 t^{3}}{8}-2 t$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	one of these terms correct all correct (no $+c$ etc)
(b)(i)	$t=1 \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} t}=\frac{4}{8}-2$	M1		Correctly sub $t=1$ into their $\frac{\mathrm{d} y}{\mathrm{~d} t}$
	$=-1 \frac{1}{2}$	A1cso	2	must have $\frac{\mathrm{d} y}{\mathrm{~d} t} \operatorname{correct}$ (watch for t^{3} etc)
(ii)	$\frac{\mathrm{d} y}{\mathrm{~d} t}<0$			must have used $\frac{\mathrm{d} y}{\mathrm{~d} t}$ in part (b)(i)
	\Rightarrow (height is) decreasing (when $t=1$)	E1 \checkmark	1	must state that " $\frac{\mathrm{d} y}{\mathrm{~d} t}<0$ " or " $-1.5<0$ " or the equivalent in words FT their value of $\frac{\mathrm{d} y}{\mathrm{~d} t}$ with appropriate explanation and conclusion
(c)(i)	$\begin{aligned} & \left(\frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}=\right) \quad \frac{4}{8} \times 3 t^{2}-2 \\ & \left(t=2, \quad \frac{\mathrm{~d}^{2} y}{\mathrm{~d} t^{2}}=\right) \end{aligned}$	M1		Correctly differentiating their $\frac{\mathrm{d} y}{\mathrm{~d} t}$ even if wrongly simplified
		A1cso	2	Both derivatives correct and simplified to 4
(ii)	\Rightarrow minimum	E1 \checkmark	1	FT their numerical value of $\frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}$ from part (c) (i)
	Total		8	

MPC1 (cont)

Q	Solution	Marks	Total	Comments
3(a)(i)	$\sqrt{18}=3 \sqrt{2}$	B1	1	Condone $k=3$
(ii)	$\frac{2 \sqrt{2}}{3 \sqrt{2}+4 \sqrt{2}}$	M1		attempt to write each term in form $n \sqrt{2}$ with at least 2 terms correct
		A1		correct unsimplified
	$=\frac{2}{7}$	A1	3	
				$\begin{array}{rlr} \text { or } \times \frac{\sqrt{2}}{\sqrt{2}} & \text { M1 } \\ \text { integer terms } & =\frac{4}{6+8} & \text { A1 } \\ & =\frac{2}{7} & \text { A1 } \end{array}$
(b)	$\frac{7 \sqrt{2}-\sqrt{3}}{2 \sqrt{2}-\sqrt{3}} \times \frac{2 \sqrt{2}+\sqrt{3}}{2 \sqrt{2}+\sqrt{3}}$	M1		
	$\begin{aligned} & \text { (numerator }=\text {) } \\ & \qquad 14 \times 2-2 \sqrt{6}+7 \sqrt{6}-3 \end{aligned}$	m1		correct unsimplified but must simplify $(\sqrt{2})^{2},(\sqrt{3})^{2}$ and $\sqrt{2} \times \sqrt{3}$ correctly
	$\text { (denominator }=8-3=\text {) } 5$	B1		must be seen or identified as denominator giving $\frac{25+5 \sqrt{6}}{5}$
	(Answer =) $5+\sqrt{6}$	A1cso	4	$m=5, n=6$
	Total		8	

MPC1 (cont)

Q	Solution	Marks	Total	Comments
4(a)(i)	$(x-3)^{2}$ $(x-3)^{2}+2$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	or $p=3$ seen
(ii)	$(x-3)^{2}=-2$ No (real) square root of -2 therefore equation has no real solutions	M1 A1cso	2	FT their positive value of q not use of discriminant for graphical approach see below to see if SC1 can be awarded
(b)(i)	$\begin{gathered} x=\text { 'their' } p \quad \text { or } \quad y=\text { 'their' } q \\ \text { Vertex is at }(3,2) \end{gathered}$	M1 A1cao	2	or $x=3$ found using calculus
(ii)		B1		y intercept $=11$ stated or marked on \boldsymbol{y} axis (as y intercept of any graph)
		M1		\cup shape (generous)
		A1	3	above x-axis, vertex in first quadrant crossing y-axis into second quadrant
(iii)	Translation	E1		and no other transformation
	through $\left[\begin{array}{l}-3 \\ -2\end{array}\right]$	M1		FT negative of BOTH 'their' vertex coords
		A1	3	both components correct for A1; may describe in words or use a column vector
	Total		12	

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Marks \& Total \& Comments \\
\hline 5(a) \& \[
\begin{gathered}
\mathrm{p}(-1)=(-1)^{3}-4 \times(-1)^{2}-3(-1)+18 \\
(=-1-4+3+18)=16
\end{gathered}
\] \& \[
\begin{aligned}
\& \text { M1 } \\
\& \text { A1 }
\end{aligned}
\] \& 2 \& \(\mathrm{p}(-1)\) attempted not long division \\
\hline (b)(i) \& \[
\begin{aligned}
\& \mathrm{p}(3)=3^{3}-4 \times 3^{2}-3 \times 3+18 \\
\& \mathrm{p}(3)=27-36-9+18=0 \Rightarrow x-3 \text { is a factor }
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { M1 } \\
\& \text { A1 }
\end{aligned}
\] \& 2 \& \(p(3)\) attempted not long division shown \(=0\) plus statement \\
\hline \multirow[t]{2}{*}{(ii)} \& \begin{tabular}{l}
Quadratic factor \(\left(x^{2}-x+c\right)\) or \(\left(x^{2}+b x-6\right)\) \\
Quadratic factor \(\left(x^{2}-x-6\right)\)
\end{tabular} \& M1

A1 \& \& | $-x$ or -6 term by inspection |
| :--- |
| or full long division by $x-3$ or comparing coefficients or $\mathrm{p}(-2)$ attempted correct quadratic factor (or $x+2$ shown to be factor by Factor Theorem) |

\hline \& \[
[\mathrm{p}(x)=](x-3)(x-3)(x+2)

\] \& A1 \& 3 \& | $\text { or }[\mathrm{p}(x)=](x-3)^{2}(x+2)$ |
| :--- |
| must see product of factors |

\hline \multirow[t]{2}{*}{(c)} \& \& M1

A1 \& \& | cubic curve with one maximum and one minimum |
| :--- |
| meeting x-axis at -2 and touching x-axis at 3 |

\hline \& Final A1 is dependent on previous A1 and can be withheld if curve has very poor curvature beyond $x=3, \mathrm{~V}$ shape at $x=3$ etc \& A1 \& 3 \& graph as shown , going beyond $x=-2$ but condone max on or to right of y-axis

\hline \& Total \& \& 10 \&

\hline
\end{tabular}

MPC1 (cont)

MPC1 (cont)

Q	Solution	Marks	Total	Comments
7(a)	$x=0 \Rightarrow y^{2}-4 y-12(=0)$ $(y-6)(y+2) \quad(=0)$	M1 A1		sub $x=0 \&$ correct quadratic in y or $(y-2)^{2}=16$ or $(y-2)^{2}-16=0$ correct factors or formula as far as $\frac{4 \pm \sqrt{64}}{2}$ or $y-2= \pm \sqrt{16}$
	$\Rightarrow y=-2,6$	A1	3	condone ($0,-2$) \& (0,6)
(b)	$(x+3)^{2}-9+(y-2)^{2}-4(=12)$	M1		correct sum of square terms and attempt to complete squares (or multiply out) PI by next line
	$\left(r^{2}=\right) \quad 9+4+12$	A1		$\left(r^{2}=\right) 25$ seen on RHS
	$(\Rightarrow r=) 5$	A1	3	$r=\sqrt{25} \text { or } r= \pm 5 \text { scores A0 }$
(c)(i)	$\begin{aligned} & \left(C P^{2}=\right)(2--3)^{2}+(5-2)^{2} \\ & \Rightarrow(C P=) \sqrt{34} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	condone one sign slip within one bracket $n=34$
(ii)	$P Q^{2}=C P^{2}-r^{2}=34-25$	M1		Pythagoras used correctly with values FT "their" r and $C P$
	$(\Rightarrow P Q=) 3$	A1	2	
	Total		10	

MPC1 (cont)

General Certificate of Education (A-level) June 2013

Mathematics

MPC1

(Specification 6360)

Pure Core 1

Final

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk
Copyright © 2013 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
B	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
Jor ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
-x EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.
Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Solution	Marks	Total	Comments
2(a)(i)	$(\sqrt{48}=) 4 \sqrt{3}$	B1	1	condone $n=4$. No ISW .
(ii)	$\sqrt{12}=2 \sqrt{3}$ and $\sqrt{48}=4 \sqrt{3}$	M1		(FT 'their'n) $2 x \sqrt{3}=7 \sqrt{3}-4 \sqrt{3}$
	$(x=) \frac{7 \sqrt{3}-4 \sqrt{3}}{2 \sqrt{3}}$	A1		correct quotient unsimplified or correct equation in integers eg $6 x=21-12$
	$=\frac{3}{2}$	A1cso	3	accept 1.5 but not $\frac{9}{6}$ etc alternative 1 $\begin{aligned} x=\frac{7 \sqrt{3}-\sqrt{48}}{\sqrt{12}} & \times \frac{\sqrt{12}}{\sqrt{12}} \quad \text { M1 } \\ \text { integer terms } & =\frac{42-24}{12} \\ & =\frac{3}{2} \end{aligned} \quad \text { A1 } 18 .$
(b)	$\begin{aligned} & \frac{11 \sqrt{3}+2 \sqrt{5}}{2 \sqrt{3}+\sqrt{5}} \times \frac{2 \sqrt{3}-\sqrt{5}}{2 \sqrt{3}-\sqrt{5}} \\ & \text { (numerator }=\text {) } \\ & \quad 22 \times 3+4 \sqrt{15}-11 \sqrt{15}-2 \times 5 \end{aligned}$	M1 A1		correct unsimplified but must simplify $(\sqrt{3})^{2},(\sqrt{5})^{2}$ and $\sqrt{3} \times \sqrt{5}$ correctly
	$\text { (denominator = } 12-5=\text {) } 7$	B1		must be seen or identified as denominator giving $\frac{56-7 \sqrt{15}}{7}$
	(Answer =) $8-\sqrt{15}$	A1cso	4	
	Total		8	

Q	Solution	Marks	Total	Comments
3(a)	$(x-5)^{2}+(y+7)^{2}$ $(x-5)^{2}+(y+7)^{2}=49$	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { A1cao } \end{gathered}$	3	one term correct both terms correct and added must see 49 not just 7^{2} condone $(x-5)^{2}+(y--7)^{2}=49$
(b)(i)	(Centre is) ($5,-7$)	B1」	1	correct or FT their a and b
(ii)	$\text { Radius }=7$	B1」	1	condone $\sqrt{49}$ but not ± 7 or $\pm \sqrt{49}$ correct or FT their \sqrt{k} provided $k>0$
(c)(i)		M1		freehand circle with centre in correct quadrant or FT from their (b)(i) must have both axes shown clearly
		A1	2	correct position cutting negative y-axis twice and touching x-axis at $x=5$ 5 must be marked on x-axis or centre clearly marked as $(5,-7)$ must have correct centre and radius in (b)
(ii)	$x=5$ $y=-14$ Translation	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	2	(5, -14)
(d)		E1		and no other transformation
	$\text { through }\left[\begin{array}{l} 6 \\ * \end{array}\right]$	M1		
	$\left[\begin{array}{c} 6 \\ -7 \end{array}\right]$	A1cso	3	both components correct for A1; may describe in words or use a column vector
	Total		12	

Q	Solution	Marks	Total	Comments
5(a)(i)	$2(x+1.5)^{2}$	M1		OE
	$2(x+1.5)^{2}+0.5$	A1	2	$2\left(x+\frac{3}{2}\right)^{2}+\frac{1}{2}$ OE
(ii)	(Minimum value is) 0.5	B1 \checkmark	1	ft their q
(b)(i)	$\left(A B^{2}=\right)(x+3)^{2}+(3 x+9-5)^{2}$	M1		condone one sign error inside one bracket
	$(3 x+4)^{2}=9 x^{2}+24 x+16$	B1		OE
	$\begin{aligned} & A B^{2}=x^{2}+6 x+9+9 x^{2}+24 x+16=10 x^{2}+30 x+25 \\ & \Rightarrow A B^{2}=5\left(2 x^{2}+6 x+5\right) \end{aligned}$	A1cso	3	AG
(ii)	Either $\sqrt{5 \times \text { 'their'(a)(ii) }}$ or $5 \times$ 'their' (a)(ii)	M1		using their minimum value from (a)(ii) and 5
				provided "their" (a)(ii) > 0
	$\text { (Minimum length of } A B=\text {) } \frac{1}{2} \sqrt{10}$	A1cso	2	
	Total		8	
6(a)	$\frac{\mathrm{d} y}{\mathrm{~d} y}=5 x^{4}-4 x$	M1		one of these terms correct
	$\left(=5(-1)^{4}-4(-1)\right) \quad=9$	A1		
	Tangent has equation $y=$ 'their 9 ' $x+c$ and $6=$ 'their $9 '(-1)+c \quad \Rightarrow c=\ldots$	m1		tangent using 'their' gradient, and attempt to find c using $x=-1$ and $y=6$
	$\Rightarrow y=9 x+15$	A1	5	equation must be seen in this form
(b)(i)	When $x=2, y=2^{5}-2 \times 2^{2}+9=32-8+9=33$			be convinced that they are using curve equation
	$(k=) 33$	B1	1	NMS $k=33$ scores B0
(ii)	When $x=2, y=9 \times 2+15=33$ so lies on tangent	B1	1	be convinced that they are using tangent equation and have statement

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Marks \& Total \& Comments \\
\hline 6(c)(i) \& \[
\begin{aligned}
\& \frac{x^{6}}{6}-\frac{2 x^{3}}{3}+9 x \\
\& {\left[\frac{2^{6}}{6}-\frac{2 \times 2^{3}}{3}+9 \times 2\right]-\left[\frac{(-1)^{6}}{6}-\frac{2 \times(-1)^{3}}{3}+9 \times(-1)\right]} \\
\& \quad\left[\frac{64}{6}-\frac{16}{3}+18\right]-\left[\frac{1}{6}+\frac{2}{3}-9\right] \\
\& =31.5 \\
\& \left(\text { or } \frac{189}{6} \text { etc }\right) \\
\& \text { Area of trapezium }=\frac{1}{2} \times 3 \times(6+\text { 'their'k) } \\
\& \text { Shaded area }=\text { Trapezium }- \text { 'their' (c)(i) value } \\
\& =27
\end{aligned}
\] \& \begin{tabular}{l}
M1 \\
A1 \\
A1 \\
m1 \\
A1 \\
B1 \(\sqrt{ }\) \\
M1 \\
A1
\end{tabular} \& \begin{tabular}{l}
5 \\
3
\end{tabular} \& \begin{tabular}{l}
one of these terms correct another term correct all correct (may have +c) \\
\(F(2)-F(-1)\) unsimplified FT "their terms" from integration
\[
=\frac{70}{3}-\left(-\frac{49}{6}\right)
\] \\
condone single fraction
\[
=58.5 \text { when } k=33
\] \\
OE eg \(\frac{162}{6}\)
\end{tabular} \\
\hline \& Total \& \& 15 \& \\
\hline 7(a)

(b) \& | $\begin{aligned} & (k-2)^{2}-4 \times(2 k-7)(k-3) \\ & k^{2}-4 k+4-4\left(2 k^{2}-6 k-7 k+21\right) \\ & \text { "their" }-7 k^{2}+48 k-80 \geqslant 0 \\ & \quad 7 k^{2}-48 k+80 \leqslant 0 \end{aligned}$ $7 k^{2}-48 k+80=(7 k-20)(k-4)$ |
| :--- |
| critical values are 4 and $\frac{20}{7}$ $\frac{20}{7} \leqslant k \leqslant 4$ |
| Take their final line as their answer | \& \& 4

4 \& | discriminant - condone one slip -condone omission of brackets |
| :--- |
| real roots condition; $\mathrm{f}(k) \geqslant 0$ must appear before final line AG (all working correct with no missing brackets etc) |
| correct factors |
| (or roots unsimplified) $\frac{48 \pm \sqrt{64}}{14}$ accept $\frac{56}{14}, \frac{40}{14}$ etc here |
| sketch or sign diagram including values |
| fractions must be simplified here |

\hline \& Total \& \& 8 \&

\hline \& TOTAL \& \& 75 \&

\hline
\end{tabular}

AQA

A-LEVEL

Mathematics

Pure Core 1 - MPC1
Mark scheme

6360

June 2014

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from aqa.org.uk

[^6]
Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
B	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
\checkmark orft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
-xEE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
C	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Mark \& Total \& Comment

\hline (a)(i) \& $\operatorname{Grad} A B=\frac{-5-2}{3--1} \quad$ OE
$$
=-\frac{7}{4}
$$ \& M1
A1 \& 2 \& $$
\text { correct unsimplified eg } \frac{2--5}{-1-3}
$$

\hline (ii) \& $$
\left[\begin{array}{l}
\left.\begin{array}{l}
y--5=' t h e i r ~ g r a d ' ~ \\
y-2=\text { 'their grad' } \\
\\
(x-3) \\
y-2=-\frac{7}{4}(x+1) \\
y+5=-\frac{7}{4}(x-3) \\
y=-\frac{7}{4} x+\frac{1}{4}
\end{array}\right] \text {, }
\end{array}\right\}
$$
$$
7 x+4 y=1
$$ \& M1

A1

A1 \& 3 \& | either pair of coordinates used correctly and attempt to find c if using $y=m x+c$ |
| :--- |
| OE, any form of correct equation with - - simplified to + |
| integer coefficients \& in this form |

\hline (b)(i) \& $$
(M) \quad(1,-1.5)
$$ \& B1 \& 1 \& condone $x=1, y=-\frac{3}{2}$

\hline \multirow[t]{3}{*}{(ii)} \& $$
\text { Perp grad }=\frac{4}{7}
$$ \& B1 \checkmark \& \& perp grad $=-1 /$ 'their' $\operatorname{grad} A B$

\hline \& $$
y--\frac{3}{2}=\text { 'their' } \frac{4}{7}(x-1)
$$ \& M1 \& \& ft 'their M ' but must have attempted perpendicular gradient

\hline \& $$
y+\frac{3}{2}=\frac{4}{7}(x-1)
$$ \& A1 \& 3 \& any correct form with -- simplified to + eg $8 x-14 y=29 ; y=\frac{4}{7} x+c, c=-\frac{29}{14}$

\hline \multirow[t]{3}{*}{(c)} \& $$
\begin{gathered}
\left(A C^{2}=\right)(k--1)^{2}+(2 k+3-2)^{2} \\
k^{2}+2 k+1+4 k^{2}+4 k+1=13 \\
5 k^{2}+6 k-11=0
\end{gathered}
$$ \& \[

$$
\begin{aligned}
& \text { M1 } \\
& \text { A1 }
\end{aligned}
$$

\] \& \& \[

(k+1)^{2}+(2 k+1)^{2}
\]

\hline \& $$
(5 k+11)(k-1)=0
$$ \& A1 \& \& correct factors or correct use of formula as far as $\frac{-6 \pm \sqrt{256}}{10}$

\hline \& $$
\Rightarrow k=1, \quad k=-\frac{11}{5}
$$ \& A1 \& 4 \&

\hline \& Total \& \& 13 \&

\hline
\end{tabular}

(a) (i) NMS $\operatorname{grad} A B=-\frac{7}{4}$ earns 2 marks.
(ii) must simplify $y--5$ to $y+5$ or $x--1$ to $x+1$ for first A1

Condone $8 y+14 x=2$ etc for final A1, but not $7 x+4 y-1=0$ etc
(b)(ii) If their gradient of $A B$ is m, then use of $-m$ or $1 / m$ can earn M1. For A1, $1 /\left(\frac{7}{4}\right), \frac{14.5}{7}$ etc must be simplified.

Q	Solution	Mark	Total	Comment
2	$\begin{aligned} & \frac{15+7 \sqrt{3}}{9+5 \sqrt{3}} \times \frac{9-5 \sqrt{3}}{9-5 \sqrt{3}} \\ & (\text { Numerator }=) 135-75 \sqrt{3}+63 \sqrt{3}-105 \\ & (\text { Denominator }=81-45 \sqrt{3}+45 \sqrt{3}-75) \\ & =6 \end{aligned} \begin{aligned} & \left(\frac{30-12 \sqrt{3}}{6}=\right) 5-2 \sqrt{3} \end{aligned}$ Alternative $\begin{gathered} (9+5 \sqrt{3})(m+n \sqrt{3}) \\ =9 m+15 n+5 m \sqrt{3}+9 n \sqrt{3} \\ 9 m+15 n=15, \quad 5 m+9 n=7 \\ m=5 \quad, \quad n=-2 \\ 5-2 \sqrt{3} \end{gathered}$	M1 A1 B1 A1cso (M1) (A1) (A1) (A1)	4	writing correct quotient and multiplying by correct conjugate of denominator $30-12 \sqrt{3}$ must be seen as denominator units (cm) need not be given must be correct both equations correct either correct
	Total		4	
	No marks if candidate uses $\frac{9+5 \sqrt{3}}{15+7 \sqrt{3}}$ Condone multiplication by $9-5 \sqrt{3}$ instead of $\frac{9-5 \sqrt{3}}{9-5 \sqrt{3}}$ for M1 only if subsequent working shows multiplication by both numerator and denominator - otherwise M0. May use alternative conjugate $\frac{15+7 \sqrt{3}}{9+5 \sqrt{3}} \times \frac{5 \sqrt{3}-9}{5 \sqrt{3}-9}$ M1 numerator $=12 \sqrt{3}-30$ A1 denominator $=-6$ B1 Ignore any incorrect units			

Q	Solution	Mark	Total	Comment
3 (a)(i) (ii)	$\begin{aligned} & \left(\frac{\mathrm{d} y}{\mathrm{~d} x}=\right) \quad 10 x^{4}+20 x^{3} \\ & \left(\frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=\right) 40 x^{3}+60 x^{2} \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { B1 } \sqrt{1} \end{gathered}$	2 1	one term correct all correct (no +c etc) ft their $\frac{\mathrm{d} y}{\mathrm{~d} x}$
(b)(i)	$\left(\frac{\mathrm{d} y}{\mathrm{~d} x}=\right) \quad 10-20=-10$	B1 $\sqrt{ }$		correctly sub $x=-1$ into their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ and evaluated correctly
	$\frac{\mathrm{d} y}{\mathrm{~d} x}<0$ (therefore y is) decreasing	E1 $\sqrt{ }$	2	Must state "decreasing" and $\frac{\mathrm{d} y}{\mathrm{~d} x}<0$ ft 'therefore y is increasing' and reason if their value of $\frac{\mathrm{d} y}{\mathrm{~d} x}>0$
(ii)	(When $x=-1) \quad y=2$ $y-\text { 'their' } 2=\text { 'their grad ' }(x--1)$ but must be tangent and not normal	$\begin{gathered} \text { B1 } \\ \text { M1 } \end{gathered}$		ft ' their' value of $\frac{\mathrm{d} y}{\mathrm{~d} x}$ when $x=-1$ and ' their' y-coordinate
	$y-2=-10(x+1)$ or $y=-10 x-8$ etc	A1	3	any correct tangent eqn from correct $\frac{\mathrm{d} y}{\mathrm{~d} x}$
(c)	$\begin{aligned} & \left(\frac{\mathrm{d} y}{\mathrm{~d} x}=\right) 10(-2)^{4}+20(-2)^{3} \\ & \quad=160-160=0 \Rightarrow \text { stationary point } \\ & \text { (when } x=-2 \text {) } \end{aligned}$	M1 A1		correctly sub $x=-2$ into their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ correctly shown that $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ plus correct statement
	$\begin{aligned} \left(\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}\right. & =) 40(-2)^{3}+60(-2)^{2} \\ & =-320+240=-80<0 \end{aligned}$ (Therefore) maximum (point at Q)	M1 A1	4	correctly sub $x=-2$ into their $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$ or other suitable test for max/min either $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=-320+240<0$ or $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=-80<0$ plus conclusion
	Total		12	
(b) (i)	Accept "gradient is negative so decreasing" Do not accept "because it is negative" or " May earn M1 for attempt to find c using y Must simplify $x--1$ to $x+1$ for A1 May write "their" $10 x^{4}+20 x^{3}=0$ and atte leading to " $x=-2 \ldots$ stationary pt" for A1	or E1 $\frac{y}{x}=-10$ $m x+c$ if pt to fin	as reas clearly x for f	ns for E1 nding tangent and not normal. st M1

Q	Solution	Mark	Total	Comment
4 (a)(i) (ii) (b)(i) (ii)	$k-(x+3)^{2}$ $\begin{aligned} & 25-(x+3)^{2} \\ & (\text { Max value }=) 25 \\ & (8+x)(2-x) \end{aligned}$ crosses x-axis at -8 and 2	M1 A1 B1 $\sqrt{ }$ B1 M1 A1 B1	3	or $x^{2}+6 x-16=(x+3)^{2}-25$ or $q=3$ stated ft their p \cap shape curve roughly symmetrical with max to left of y-axis, curve in all 4 quadrants and y-intercept 16 stated or marked on y-axis correct - stated or marked on x-axis
	Total		7	
(a)(i) (ii) (b)(i) (ii)	Example 16- $(x+3)^{2}-9$ earns M1 $(-3,25)$ scores $\mathbf{B 0}$ since maximum value not identified Allow maximum given as " $y=25$ " Condone $-(x-2)(x+8),(x-2)(-x-8)$ etc Withhold $\mathbf{B 1}$ if more than 2 intercepts			

Q	Solution	Mark	Total	Comment
(a) (b) (c)	$\begin{gathered} (-3)^{3}+c(-3)^{2}+d(-3)+3 \\ -27+9 c-3 d+3=0 \\ \Rightarrow 3 c-d=8 \\ 2^{3}+c \times 2^{2}+d \times 2+3=65 \\ 8+4 c+2 d+3=65 \\ 5 c=35 \quad \text { or } 10 d=130 \quad \mathrm{OE} \\ c=7 \\ d=13 \end{gathered}$	A1 M1 A1 M1 A1 A1	2 3	$\mathrm{p}(-3)$ attempted $\mathbf{A G G}\left\{\begin{array}{l} \text { must see this line or equivalent, } \\ \text { and must have }=0 \text { on right or left } \\ \text { before final result } \\ \text { be convince } \end{array}\right.$ $\mathrm{p}(2)$ attempted $\& \ldots=65$ correct equation in any form simplifying powers of 2 eg $4 c+2 d=54$ correct elimination of c or d using both $3 c-d=8$ and their equation from (b)
	Total		7	
(a) (b) (c)	May use long division by $x+3$ but must reach remainder term for M1 Condone missing brackets in $\mathrm{p}(-3)$ expression if recovered later as $-27+9 c+\ldots$ to earn A1 Treat parts (b) and (c) holistically May use long division by $x-2$ as far as remainder and equate their remainder to 65 for M1 Example $4 c+2(3 c-8)=54$ earns M1 for eliminating d if equation in part (b) is correct			

Q	Solution	Mark	Total	Comment
$\begin{aligned} & 6 \text { (a)(i) } \end{aligned}$	$\begin{aligned} & x^{3}-x^{2}-5 x+7=x+7 \\ & \Rightarrow x^{3}-x^{2}-5 x=x \end{aligned}$	M1		must see this line OE eg $x^{3}-x^{2}-6 x=0$
	$(x \neq 0) \Rightarrow x^{2}-x-6=0$	A1	2	AG
(ii)	$(x-3)(x+2)$	M1		correct
	$x=3, \quad x=-2$	A1		both x values correct
	$A(-2,5)$ and $C(3,10)$	A1	3	both pairs of coordinates correct
(b)	$\frac{x^{4}}{4}-\frac{x^{3}}{3}-\frac{5 x^{2}}{2}+7 x \quad(+c)$	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { A1 } \end{gathered}$	3	2 terms correct another term correct all correct
(c)	$F(-2)=\left[\frac{(-2)^{4}}{4}-\frac{(-2)^{3}}{3}-\frac{5(-2)^{2}}{2}+7(-2)\right]$	M1		F('their'-2) correctly substituting into their answer to (b) , but must have scored M1 in part (b)
	$0-\left(\frac{16}{4}+\frac{8}{3}-\frac{20}{2}-14\right)=\frac{52}{3}$	A1		correct value using limits correctly
	Area of trapezium $=\left(\frac{1}{2}(5+7) \times 2\right)=12$	B1		or rectangle plus triangle
	Area of $R=\frac{52}{3}-12=\frac{16}{3}$	A1	4	$5 \frac{1}{3}$ or 5.3
	Total		12	
(a)(ii)	NMS either ($-2,5$) or $(3,10)$ scores SC1 and both correct scores SC3			
	Allow "when $x=3, \quad y=10$ and when $x=-2, \quad y=5$ " instead of coordinates for final A1			
(c)	Condone missing brackets around "their" -2 for M1 and if recovered and correct on next line for A1 Area of trapezium found by integration $\int_{-2}^{0}(x+7) \mathrm{d} x=\left[\frac{x^{2}}{2}+7 x\right]_{-2}^{0}=12$ earns $\mathbf{B 1}$ Accept rounded answer of 5.3 etc after correct exact answer seen.			

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Mark \& Total \& Comment \\
\hline \begin{tabular}{l}
(a) \\
(b)
\end{tabular} \& \& \begin{tabular}{l}
M1 \\
A1cso \\
M1 \\
A1 \\
M1 \\
A1
\end{tabular} \& 2

4 \& | Correctly multiplied out with >0 |
| :--- |
| all working correct |
| correct factors or correct use of formula as far as $\frac{1 \pm \sqrt{289}}{12}$ |
| use of sign diagram or graph with CVs clearly shown |
| or $\frac{3}{2} \geqslant x \geqslant-\frac{4}{3}$ |

\hline \& Total \& \& 6 \&

\hline \& TOTAL \& \& 75 \&

\hline (a)

(b) \& \multicolumn{4}{|l|}{| Allow final answer in form $-\frac{1}{3}>x$. |
| :--- |
| For second M1, if critical values are correct then sign diagram or sketch must be correct with correct CVs marked. |
| However, if CVs are not correct then second M1 can be earned for attempt at sketch or sign diagram but their CVs MUST be marked on the diagram or sketch. |
| Final A1, inequality must have x and no other letter. |
| Final answer of $x \leqslant \frac{3}{2}$ AND $x \geqslant-\frac{4}{3}$ (with or without working) scores 4 marks . |
| (A) $-\frac{4}{3}<x<\frac{3}{2}$ |
| (B) $x \leqslant \frac{3}{2} \quad$ OR $\quad x \geqslant-\frac{4}{3}$ |
| (C) $x \leqslant \frac{3}{2}, x \geqslant-\frac{4}{3}$ |
| (D) $-\frac{4}{3} \leqslant k \leqslant \frac{3}{2}$ |
| with or without working each score 3 marks (SC3) |
| Example NMS $\frac{4}{3} \leqslant x \leqslant \frac{3}{2}$ scores M0 (since one CV is incorrect) |
| Example NMS $x<\frac{3}{2}, x<-\frac{4}{3}$ scores M1 A1 M0 (since both CVs are correct) |}

\hline
\end{tabular}

[^0]: Set and published by the Assessment and Qualifications Alliance.

[^1]: Set and published by the Assessment and Qualifications Alliance.

[^2]: Set and published by the Assessment and Qualifications Alliance.

[^3]: Further copies of this Mark Scheme are available from: aqa.org.uk

[^4]: Further copies of this Mark Scheme are available from: aqa.org.uk

[^5]: Further copies of this Mark Scheme are available from: aqa.org.uk

[^6]: Copyright © 2014 AQA and its licensors. All rights reserved.
 AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

