AQA Maths Pure Core 1

Mark Scheme Pack

2006-2014

PhysicsAndMathsTutor.com

General Certificate of Education

Mathematics 6360

MPC1 Pure Core 1

Mark Scheme

2006 examination - January series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

М	mark is for method					
m or dM	mark is dependent on one or more M marks and is for method					
А	mark is dependent on M or m marks and	l is for accuracy	/			
В	mark is independent of M or m marks an	nd is for method	l and accuracy			
Е	mark is for explanation					
$\sqrt{100}$ or ft or F	follow through from previous					
	incorrect result	MC	mis-copy			
CAO	correct answer only	MR	mis-read			
CSO	correct solution only	RA	required accuracy			
AWFW	anything which falls within	FW	further work			
AWRT	anything which rounds to	ISW	ignore subsequent work			
ACF	any correct form	FIW	from incorrect work			
AG	answer given	BOD	given benefit of doubt			
SC	special case	WR	work replaced by candidate			
OE	or equivalent	FB	formulae book			
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme			
–x EE	deduct x marks for each error	G	graph			
NMS	no method shown	с	candidate			
PI	possibly implied	sf	significant figure(s)			

Key To Mark Scheme And Abbreviations Used In Marking

substantially correct approach

No Method Shown

SCA

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

dp

decimal place(s)

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

MPC1				
Q	Solution	Marks	Total	Comments
1(a)	$(\sqrt{5})^2 + 2\sqrt{5} - 2\sqrt{5} - 4 = 1$	M1		Multiplying out or difference of two
		A 1	2	squares attempted
		AI	Z	Full marks for correct answer /no working
(h)	$\sqrt{8} - 2\sqrt{2} + \sqrt{18} - 3\sqrt{2}$	M1		Fither correct
	$\sqrt{6} = 2\sqrt{2}$, $\sqrt{16} = 5\sqrt{2}$	A 1	2	Full marks for correct answer /no working
	Total		4	
2(a)(i)	$15 + 4k = 7 \Rightarrow 4k = -8 \Rightarrow k = -2$	B1	1	AG (condone verification or $y = -2$)
(ii)	$\frac{1}{2}(x_1 + x_2)$ or $\frac{1}{2}(y_1 + y_2)$	M1		
()	$2^{(v_1 \dots v_2)} + 2^{(v_1 \dots v_2)}$			
	Midpoint coordinates $\left(3,-\frac{1}{2}\right)$	A1	2	One coordinate correct implies M1
			-	
	Attempt at $\Delta y / \Delta x$ or $y = -3 x + 7$	M1		(Nat = aver a)(max use Minstead of $1/P$)
(D)	Attempt at $\Delta y / \Delta x$ of $y = -\frac{1}{4}x + \frac{1}{4}$	IVI I		(Not x over y)(may use M instead of A/B)
	Gradient $AB = -\frac{3}{2}$	A 1	2	0.75 etc. environt equivalent
	4	AI	2	-0.75 etc any correct equivalent
(c)(i)	m m = -1 used or stated	1		
	$m_1 m_2 = 1$ used of stated	1		Follow through their gradient of <i>AB</i> from
	Hence gradient $AC = \frac{1}{3}$	A1√	2	part (b)
(ii)	$y = 1 = \frac{4}{2}(x = 1)$ or $3y = 4x = 1$ etc			Follow through their gradient of AC from
(1)	$y = 1 = \frac{1}{3}(x = 1)$ or $3y = 4x = 1$ etc	B1√`	1	part (c) (i) must be normal & $(1,1)$ used
	2	M1		Dutting $u = 0$ in their 4C equation and
(iii)	$y=0 \qquad \Rightarrow x-1=-\frac{3}{4}$	1011		attempting to find x
	4			······································
	$x = \frac{1}{4}$	A1	2	CSO. C has coordinates $\left(\frac{1}{2}, 0\right)$
			10	(4)
3(a)(i)	$(r-2)^2$	R1	10	n=2
J(a)(I)	(x - 2) + 5	B1	2	p^{p-2} q=5
				1
(ii)	Minimum point (2, 5) or $x = 2, y = 5$	B2√`	2	B1 for each coordinate correct or ft
				Alt method M1, A1 sketch,
				differentiation
ക്ര				
	$12 - 2x = x - 4x + 9$ $\Rightarrow x^2 - 2x - 3 = 0$	51		Or $x - 4x + 9 + 2x = 12$
	$\rightarrow x - 2x - 3 = 0$	BI	1	AG (be convinced) (must have $= 0$)
(ii)	(x-3)(x+1) = 0	M1		Attempt at factors or quadratic formula or
		1411		one value spotted
	x = 3, -1	A1		Both values correct & simplified
	Substitute one value of x to find y	M1		May substitute into equation for <i>L</i> or <i>C</i>
	Points are $(3, 6)$ and $(-1, 14)$	A1	4	<i>y</i> -coordinates correct linked to <i>x</i> values
	lotal		<u>у</u>	

3

PhysicsAndMathsTutor.com

Q	Solution	Marks	Total	Comments
4(a)	$(m+4)^2 = m^2 + 8m + 16$	B1		Condone $4m + 4m$
	$b^2 - 4ac = (m+4)^2 - 4(4m+1) = 0$	M1		$b^2 - 4ac$ (attempted and involving <i>m</i> 's
	$m^2 + 8m + 16 - 16m - 4 = 0$			and no x's) or $b^2 - 4ac = 0$ stated
	$\Rightarrow m^2 - 8m + 12 = 0$	A1	3	AG (be convinced – all working correct-
				= 0 appearing more than right at the end)
		M1		
(D)	(m-2)(m-6) = 0 m = 2, m = 6		2	SC B1 for 2 or 6 only without working
	m - 2, m - 0	AI	2	SC BI 101 2 01 0 01119 without working
	Total		5	
5(a)	$(x-4)^2 + (y+3)^2$	B2		B1 for one term correct
	$(11+16+9=36)$ RHS = 6^2	B1	3	Condone 36
(b)(i)	Centre $(4, -3)$	B1	1	Ft their a and b from part (a)
(11)	Radius = 6	BI√	1	Ft their r from part (a)
(c)(i)	$CO^2 = (-4)^2 + 3^2$	M1		Accept $+$ or $-$ with numbers but must add
(*)(-)	CO = 5	A1	2	Full marks for answer only
			-	
(ii)	Considering CO and radius	M1	-	
	$CO < r \Rightarrow O$ is inside the circle	Al√	2	Ft outside circle when 'their $CO' > r$ or on the circle when 'their $CO' = r$
				SC B1 \checkmark if no explanation given
	Total		9	
$f(a)(\mathbf{i})$	$p(2) = 8 \pm 4 = 20 \pm 8$	M1		Finding p(2) M0 long division
0(a)(l)	p(2) = 0 + 4 = 20 + 8 = 0 \implies r = 2 is a factor	Δ1	2	Shown = 0 AND conclusion/ statement
	$-0, \rightarrow x-2$ is a factor	211	2	about $x - 2$ being a factor
				a a a and a
(ii)	Attempt at quadratic factor $\frac{2}{2}$ + 2 = 4	Ml		or factor theorem again for 2^{nd} factor
	$x^{2} + 3x - 4$ p(x) = (x - 2)(x + 4)(x - 1)	Al	2	or $(x+4)$ or $(x-1)$ proved to be a factor
	p(x) = (x - 2)(x + 4)(x - 1)	Al	3	
(b)	<i>y</i>	B1		Graph through (0,8) 8 marked
		B1√`		Ft "their factors" 3 roots marked on x-
				4/12
		M1		Cubic curve through their 3 points
	-4 0 1 2 x	A1	4	Correct including <i>x</i> - intercepts correct
				wrong concavity at ends of graph
				wrong concerney at ends of graph
	Total		9	

Q	Solution	Marks	Total	Comments
7(a)(i)	dV 2.5 0.3 + C	M1		One term correct unsimplified
	$\frac{dt}{dt} = 2t^2 - 8t^2 + 6t$	A1		Further term correct unsimplified
		A1	3	All correct unsimplified (no $+c$ etc)
(ii)	$d^2 V$ 10.4 24.2 + C	M1		One term FT correct unsimplified
(11)	$\frac{1}{dt^2} = 10t^2 - 24t^2 + 6$	A1	2	CSO . All correct simplified
(b)	Substitute $t = 2$ into their $\frac{dV}{dV}$	M1		
	dt		2	CSO Data of shange of volume is
	(= 64 - 64 + 12) = 12	Al	Z	CSO . Kate of change of volume is $\frac{3}{1}$
				$12m^{3} s^{-1}$
(c)(i)	$t \rightarrow \frac{dV}{2} = 2 + 6$			Or putting their $dV = 0$
	$l \equiv 1 \Rightarrow \frac{1}{dt} \equiv 2 - 8 + 6$	M1		Of putting then $\frac{dt}{dt} = 0$
	$= 0 \Rightarrow$ Stationary value	A1	2	CSO . Shown to $= 0$ AND statement
	0 - Stationary value		-	(If solving equation must obtain $t = 1$)
	$d^2 V$	M1		Sub $t = 1$ into their second derivative or
(ii)	$t=1 \Rightarrow \frac{d v}{1^2} = -8$	MI		equivalent full test
	dt ²	A 1 A	2	Et if their test implies minimum
	Maximum value	Al√		Ft II their test implies minimum
8 (a)	10tar	M1	11	Attempt at either v coordinate
0(a)	$y_D = 3 + 1 = 4$ of $y_C = 12 - 8 = 4$		2	Attempt at entier y coordinate
	Area $ABCD = 3 \times 4 = 12$	AI	2	
	4	M1		Increase one newer by 1
(b)(i)	$x^3 - \frac{x^3}{2}$ (+C)			One term correct unsimplified
	4		3	All correct unsimplified (condone no $\pm C$)
			5	An contect unsimplified (condone no +C)
(ii)	Sub limits -1 and 2 into their (b) (i) ans	Ml		May use both $-1, 0$ and $0, 2$ instead
	$[8-4] - \left -1 - \frac{1}{2} \right = 5\frac{1}{2}$	Al		
	Shaded area = "their" (rectangle– integral)	M1		Alt method: difference of two integrals
	$-12-5\frac{1}{2}-6\frac{3}{2}$			
	$-12-5\frac{1}{4}-6\frac{1}{4}$	A1	4	CSO. Attempted M2, A2
(c)(i)	$dy = 6x + 3x^2$	M1		One term correct
	$\frac{1}{dx} = 0x - 5x$	A1	2	All correct (no $+C$ etc)
(ii)	When $x = 1$, $y = 2$ when $x = 1$,	B1		May be implied by correct tgt equation
	dy = 2 as 'their' and of tat			
	$\frac{1}{dx} = 5$ as then grad of tgt	M1√		Ft their derivative when $x = 1$
	Tangent is $y-2=3(x-1)$	A1	3	Any correct form $y = 3x - 1$ etc
(;;;)	\mathbf{D} $\mathbf{d} \mathbf{y}$ $\mathbf{d} \mathbf{z}^2 = \mathbf{z}^2$	M1		Watch no fudging here!! May work
(111)	Decreasing when $\frac{1}{dx} = 6x - 3x^2 < 0$	1011		backwards in proof.
	$3(2x - x^2) < 0 \implies x^2 - 2x > 0$	A1	2	AG (be convinced no step incorrect)
			-	
ക	Two critical points 0 and 2	M1		Marked on diagram or in solution
(u)	r > 2 $r < 0$ ONLV	1411		or M1 A0 for $0 < x < 2$ or $0 > x > 2$
	x < 2, $x > 0$ UNL I	Al	2	
			10	SC B1 for $x \ge 2$ (or $x \le 0$)
			18	
	IUIAL		15	

MPC1 (cont)

Q U A L I F I C A T I O N S A L L I A N C E

General Certificate of Education

Mathematics 6360

MPC1 Pure Core 1

Mark Scheme

2006 examination – June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Key To Mark Scheme And Abbreviations Used In Marking

М	mark is for method					
m or dM	mark is dependent on one or more M marks and is for method					
А	mark is dependent on M or m marks and	is for accuracy				
В	mark is independent of M or m marks and	d is for method	and accuracy			
E	mark is for explanation					
\sqrt{or} ft or F	follow through from previous					
	incorrect result	MC	mis-copy			
CAO	correct answer only	MR	mis-read			
CSO	correct solution only	RA	required accuracy			
AWFW	anything which falls within	FW	further work			
AWRT	anything which rounds to	ISW	ignore subsequent work			
ACF	any correct form	FIW	from incorrect work			
AG	answer given	BOD	given benefit of doubt			
SC	special case	WR	work replaced by candidate			
OE	or equivalent	FB	formulae book			
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme			
–x EE	deduct <i>x</i> marks for each error	G	graph			
NMS	no method shown	c	candidate			
PI	possibly implied	sf	significant figure(s)			
SCA	substantially correct approach	dp	decimal place(s)			

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

MPC1				
Q	Solution	Marks	Total	Comments
1(a)(i)	Gradient $AB = \frac{1-7}{5-1}$	M1		Must be <i>y</i> on top and subtr'n of cords
	$=-\frac{6}{4}=-\frac{3}{2}=-1.5$	A1	2	Any correct equivalent
(ii)	y-7 = m(x-1) or $y-1 = m(x-5)$	M1		Verifying 2 points or $y = -\frac{3}{2}x + c$
	leading to $3x + 2y = 17$	A1	2	AG (or grad & 1 point verified)
(b)	Attempt to eliminate x or $y : 7x = 42$ etc x = 6	M1 A1		Solving $x - 4y = 8$; $3x + 2y = 17$
	$y = -\frac{1}{2}$	A1	3	<i>C</i> is point $(6, -\frac{1}{2})$
(c)	Grad of perp = $-1 / their$ gradient AB	M1		Or $m_1m_2 = -1$ used or stated
	$=\frac{2}{3}$	A1√		ft their gradient AB
	$y-7 = \frac{2}{3}(x-1)$ or $3y - 2x = 19$	A1	3	CSO Any correct form of equation
	Total		10	
2(a)	$(x+4)^2$ +3	B1 B1	2	p = 4 $q = 3$
(b)	$(x+4)^2 = -3$ or "their" $(x+p)^2 = -q$	M1		Or discriminant = $64 - 76$
	No real square root of -3	A1	2	Disc < 0 so no real roots (all correct figs)
(c)	19 Minimum (-4, 3)	B1√		ft their $-p$ and q (or correct)
	graph	B1		Parabola (vertex roughly as shown)
	-4 x	B1	3	Crossing at $y = 19$ marked or (0, 19) stated
(d)	Translation (and no additional transf'n) through $\begin{bmatrix} -4\\ 3 \end{bmatrix}$	E1 M1 A1	3	Not shift, move, transformation, etc One component correct eg 3 units up All correct – if not vector – must say 4 units in negative <i>x</i> - direction, to left etc
	lotal		10	
3 (a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = -10x^4$	M1 A1	2	kx^4 condone extra term Correct derivative unsimplified
(b)	When $x = 1$, gradient = -10	B1√		FT their gradient when $x = 1$
	Tangent is	M1		Attempt at <i>y</i> & tangent (not normal)
	y-5 = -10(x-1) or $y+10x = 15$ etc	A1	3	CSO Any correct form
(c)	When $x = -2$ $\frac{dy}{dx} = -160$ (or < 0)	B1√		Value of their $\frac{dy}{dx}$ when $x = -2$
	$\left(\frac{\mathrm{d}y}{\mathrm{d}x} < 0 \text{ hence}\right) y \text{ is decreasing}$	E1√	2	ft Increasing if their $\frac{dy}{dx} > 0$
	Total		7	

PhysicsAndMathsTutor.com

MPC1 (cont				
Q	Solution	Marks	Total	Comments
4(a)	(_\2			Multiplied out
	$4(\sqrt{5})^{2} + 12\sqrt{5} - \sqrt{5} - 3$	M1		At least 3 terms with $\sqrt{5}$ term
	$\langle - \rangle^2$			
	$4(\sqrt{5})^2 = 4 \times 5 (=20)$	B1		
	17.11 5			
	Answer = $1/+11\sqrt{5}$	A1	3	
(b)	Either $\sqrt{75} = \sqrt{25}\sqrt{3}$ or $\sqrt{27} = \sqrt{9}\sqrt{3}$	M1		Or multiplying top and bottom by $\sqrt{3}$
	$-5\sqrt{3}-3\sqrt{3}$			$\sqrt{225} - \sqrt{81}$
	Expression = $\frac{1}{\sqrt{2}}$	A1		or $\frac{1}{3}$ or $\sqrt{25} - \sqrt{9}$ or $5-3$
	-2	A 1	2	CSO
		AI	5	
5(a)(i)		M1	U	One term correct
5(a)(l)	$\frac{dy}{dt} = 3x^2 - 20x + 28$	A1		Another term correct
	dx	A1	3	All correct ($n_0 + c_0 etc$)
		111	5	
(;;)				
(11)	Their $\frac{dy}{dt} = 0$ for stationary point	M1		Or realising condition for stationary pt
	dx			
	$(x-2)(3x-14) \equiv 0$	1111		Attempt to solve using formula/ factorise
	$\Rightarrow x = 2$	Al		Award M1, A1 for verification that
	or $x = \frac{14}{12}$	A1	4	$x = 2 \Rightarrow \frac{dy}{dt} = 0$ then may earn m1 later
	3			dx
(b)(i)	$r^4 = 10r^3$	M1		One term correct unsimplified
	$\frac{x}{4} - \frac{10x}{2} + 14x^2$ (+c)	A1		Another term correct unsimplified
	4 3	A1	3	All correct unsimplified
				(condone missing $+ c$)
(ii)	$\begin{bmatrix} 81 \\ 00 + 126 \end{bmatrix}$ (0)			
	$\begin{vmatrix}$	M1		Attempt to sub limit 3 into their (b)(i)
	$= 56\frac{1}{4}$	Al	2	AG Integration, limit sub'n all correct
(iii)	Area of triangle = $31\frac{1}{2}$	D1		
	$\frac{1}{2}$	BI		Correct unsimplified $\pm 21 \times 3$
	Shaded Area = $56\frac{1}{2}$ - triangle area	M1		
	4	1111		
	$= 24\frac{3}{4}$	A1	3	Or equivalent such as $\frac{99}{-}$
	4			4
	Total		15	

Q	Solution	Marks	Total	Comments
6(a)	p(3) = 27 - 36 + 9	M1		Finding p(3) and not long division
	$p(3) = 0 \implies x - 3$ is a factor	A1	2	Shown $= 0$ plus a statement
(b)	$x(x^2 - 4x + 3)$ or $(x - 3)(x^2 - x)$ attempt	M1		Or $p(1) = 0 \implies x - 1$ is a factor attempt
	p(x) = x(x-1)(x-3)	A1	2	Condone $x + 0$ or $x - 0$ as factor
(c)(i)	p(2) = 8 - 16 + 6	M1		Must use p(2) and not long division
	(Remainder is) -2	A1	2	
(11)	Attempt to multiply out and compare	M1		Or long division (2 terms of quotient)
	coefficients $a = -2$	A1		$x^2 - 2x$
	b = -1	A1		-1
	r = -2	A1	4	Withhold final A1 for long division unless
	SC B1 for $r = -2$ if M0 scored			written as $(x-2)(x^2-2x-1)-2$
	Total		10	
7(a)(1)	$(x-2)^2$	MI		Attempt to complete square for x
	centre has x-coordinate = 0	Al D1	2	M1 implied if value correct or -2
		BI	3	Centre (2,0)
(ii)	RHS = 18	B1		Withhold if circle equation RHS incorrect
	Radius = $\sqrt{18}$	M1		Square root of RHS of equation (if > 0)
	Radius = $3\sqrt{2}$	A1	3	
(b)	Perpendicular bisects shord so peed to use			
(0)	Length of 4	B1		
	$d^2 = (radius)^2 - 4^2$	M1		
	$d^2 = 18 - 16$			$\sqrt{\frac{18}{18}}$
	so perpendicular distance = $\sqrt{2}$	A1	3	
(c)(i)	$x^{2} + (2k - x)^{2} - 4x - 14 = 0$	M1		
	$(2k-x)^2 = 4k^2 - 4kx + x^2$	B1		
	$\Rightarrow 2x^2 + 4k^2 - 4kx - 4x - 14 = 0$			
	$(\Rightarrow x^2 + 2k^2 - 2kx - 2x - 7 = 0)$	A 1	2	AC (he convinced shout cleaking and $= 0$)
	$\Rightarrow x^2 - 2(k+1)x + 2k^2 - 7 = 0$	AI	3	AG (be convinced about algebra and -0)
(ii)	$4(k+1)^2 - 4(2k^2 - 7)$	M1		" $b^2 - 4ac$ " in terms of k (either term
				correct)
	$4k^2 - 8k - 32 = 0 \text{ or } k^2 - 2k - 8 = 0$	A1		$b^2 - 4ac = 0$ correct quadratic equation in k
	(k-4)(k+2) = 0	m1		Attempt to factorise, solve equation
	k = -2, $k = 4$	A1	4	SC B1, B1 for -2, 4 (if M0 scored)
(iii)	Line is a tangent to the circle	E1	1	Line touches circle at one point etc
	Total		17	
	TOTAL		75	

MPC1 (cont)

General Certificate of Education

Mathematics 6360

MPC1 Pure Core 1

Mark Scheme

2007 examination - January series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2007 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Μ	mark is for method						
m or dM	mark is dependent on one or more M marks and is for method						
А	mark is dependent on M or m marks and is for accuracy						
В	mark is independent of M or m marks and is for method and accuracy						
Е	mark is for explanation						
or ft or F	follow through from previous						
	incorrect result	MC	mis-copy				
CAO	correct answer only	MR	mis-read				
CSO	correct solution only	RA	required accuracy				
AWFW	anything which falls within	FW	further work				
AWRT	anything which rounds to	ISW	ignore subsequent work				
ACF	any correct form	FIW	from incorrect work				
AG	answer given	BOD	given benefit of doubt				
SC	special case	WR	work replaced by candidate				
OE	or equivalent	FB	formulae book				
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme				
–x EE	deduct <i>x</i> marks for each error	G	graph				
NMS	no method shown	c	candidate				
PI	possibly implied	sf	significant figure(s)				
SCA	substantially correct approach	dp	decimal place(s)				

Key to mark scheme and abbreviations used in marking

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Q	Solution	Marks	Total	Comments
1(a)(i)	p(-2) = -8 - 16 + 14 + k	M1		or long division or $(x+2)(x^2-6x+5)$
	$p(-2) = 0 \implies -10 + k = 0 \implies k = 10$	A1	2	AG likely withhold if $p(-2) = 0$ not seen
	Must have statement if $k=10$ substitute			
(ii)	$p(r) = (r + 2)(r^2 +, 5)$	M1		Attempt at quadratic or second linear
(11)	$p(x) = (x + 2)(x + 5)$ $p(x) = (x + 2)(x^2 - 6x + 5)$	Δ1		factor $(x-1)$ or $(x-5)$ from factor theorem
	p(x) = (x + 2)(x - 0x + 3) $\Rightarrow p(x) = (x + 2)(x - 1)(x - 5)$	A 1	2	Must be written as product
	$\rightarrow p(x) - (x+2)(x-1)(x-3)$	AI	5	Wust be written as product
(b)	p(3) = 27 - 36 - 21 + k	M1	2	long division scores M0
	(Remainder) = $k - 30 = -20$	Al	2	Condone $k - 30$
	<i>У</i> ▲ /			
		B1		Curve thro' 10 marked on <i>y</i> -axis
(0)				
		B1√		FT their 3 roots marked on <i>x</i> -axis
		2.64		
		MI		Cubic shape with a max and min
		Δ 1	4	Correct graph (roughly as on left) going
			•	beyond -2 and 5
				(condone max anywhere between $x = -2$
	Total		11	and I and min between I and 5)
2(a)(i)	3 2 2 2 3		11	Attempt to find $y = \text{ or } \Delta y / \Delta r$
2(a)(1)	$y = -\frac{1}{5}x + \dots;$ Gradient $AB = -\frac{1}{5}$	M1		
				or $\frac{3}{5}$ or $3x/5$
		A1	2	Gradient correct – condone slip in $y =$
(ii)	$m_1 m_2 = -1$	M1		Stated or used correctly
	Gradient of perpendicular = $\frac{5}{-}$	A1√		ft gradient of AB
	3			
	5			-
	$\Rightarrow y+2=\frac{5}{3}(x-6)$	A1	3	CSO Any correct form eg $y = \frac{5}{2}x - 12$,
				5x - 3y = 36 etc
(b)	Eliminating r or v (unsimplified)	M1		Must use $3x + 5y = 8$; $2x + 3y = 3$
	x = -9	A1		
	<i>y</i> = 7	A1	3	<i>B</i> (-9,7)
(C)	$4^2 + (k+2)^2$ (= 25) or $16 + d^2 = 25$	M1		Diagram with 3,4, 5 triangle
	k = 1	A1		Condone slip in one term (or $k + 2 = 3$)
	or $k = -5$	A1	3	SC1 with no working for spotting one
				correct value of k. Full marks if both
				values spotted with no contradictory work
	Tatal		11	

MPC1 (cont				
Q	Solution	Marks	Total	Comments
3 (a)	$\frac{\sqrt{5}+3}{\sqrt{5}-2} \times \frac{\sqrt{5}+2}{\sqrt{5}+2}$	M1		Multiplying top & bottom by $\pm(\sqrt{5}+2)$
	Numerator = $5 + 3\sqrt{5} + 2\sqrt{5} + 6$	M1		Multiplying out (condone one slip)
				$\pm(\sqrt{5+3})(\sqrt{5+2})$
		A 1		
	$= 5\sqrt{5} + 11$		4	With alaar avidance that denominator
	Final answer = $5\sqrt{5} + 11$	AI	4	
(b)(i)	$\sqrt{45} = 3\sqrt{5}$	B1	1	
(ii)		M1		Both sides
(11)	$\sqrt{20} = \sqrt{4}\sqrt{5}$ or $4\sqrt{5} = \sqrt{4} \times \sqrt{20}$	1011		Dotti sides
	or attempt to have equation with $\sqrt{5}$			
	or $\sqrt{20}$ only			_
	$x 2\sqrt{5} = 7\sqrt{5} - 3\sqrt{5}$ or $x\sqrt{20} = 2\sqrt{20}$	A1		or $x = \sqrt{4}$
	<i>x</i> = 2	A1	3	CSO
	Total		8	
4(a)	$(x+1)^2 + (y-6)^2$	B2		B1 for one term correct or missing + sign
	$(1+36-12=25)$ RHS = 5^2	B1	3	Condone 25
(b)(i) (ii)	Centre $(-1, 6)$ Radius = 5	B1√ B1√	1 1	FT their <i>a</i> and <i>b</i> from part (a) or correct FT their <i>r</i> from part (a) RHS must be > 0
(c)	Attempt to solve "their" $x^2 + 2x + 12 = 0$	M1		Or comparing "their" $y_{a} = 6$ and their
	r i i i i i i i i i i i i i i i i i i i			r=5
				may use a diagram with values shown
	(all working correct) so no real roots	Δ1	2	$\int r < y_c$ so does not intersect
	of statement that does not intersect	211	2	$\begin{bmatrix} \text{condone} \pm 1 \text{ or } \pm 6 \text{ in centre for A} \end{bmatrix}$
(d)(i)	$(4-x)^2 = 16-8x+x^2$	B1		Or $(-2-x)^2 = 4 + 4x + x^2$
	$x^{2} + (4-x)^{2} + 2x - 12(4-x) + 12 = 0$	M1		Sub $y = 4$, x in circle can (condens slip)
	or $(x+1)^2 + (-2-x)^2 = 25$			or "their" circle equation
	$\Rightarrow 2x^2 + 6x - 20 = 0 \Rightarrow x^2 + 3x - 10 = 0$	A1	3	AG CSO (must have $= 0$)
(ii)	$(x+5)(x-2) = 0 \implies x = -5, x = 2$	M1		Correct factors or unsimplified solution to
	Q has coordinates (-5, 9)	Al	2	(give credit if factorised in part (i))
				SC2 if Q correct. Allow $x = -5$ $y = 9$
(iii)	Mid point of 'their' $(-5, 9)$ and $(2, 2)$	M1		Arithmetic mean of either r or v coords
	$\begin{pmatrix} -1 \\ 2 \\ -1 \\ 2 \\ -1 \\ -1 \\ 2 \\ -1 \\ -1$	Δ1	2	Must follow from correct value in (ii)
	$(-1\frac{1}{2}, 3\frac{1}{2})$			
	Total		14	

Q	Solution	Marks	Total	Comments
5(a)(i)	$2x^{2} + 2xh + 4xh (= 54)$ $\Rightarrow x^{2} + 3xh = 27$	M1 A1	2	Attempt at surface area (one slip) AG CSO
(ii)	$h = \frac{27 - x^2}{3x}$ or $h = \frac{9}{x} - \frac{x}{3}$ etc	B1	1	Any correct form
(iii)	$V = 2x^2h = 18x - \frac{2x^3}{3}$	B1	1	AG (watch fudging) condone omission of brackets
(b)(i)	$\frac{\mathrm{d}V}{\mathrm{d}x} = 18 - 2x^2$	M1 A1	2	One term correct "their" V All correct unsimplified $18 - 6x^2/3$
(ii)	Sub $x = 3$ into their $\frac{dV}{dx}$	M1		Or attempt to solve their $\frac{\mathrm{d}V}{\mathrm{d}x} = 0$
	Shown to equal 0 plus statement that this implies a stationary point if verifying	A1	2	CSO Condone $x = \pm 3$ or $x = 3$ if solving
(c)	$\frac{\mathrm{d}^2 V}{\mathrm{d} x^2} = -4x \qquad (=-12)$	B1√		FT their $\frac{\mathrm{d}V}{\mathrm{d}x}$
	$\frac{d^2 V}{dx^2} < 0$ at stationary point \Rightarrow maximum	E1√	2	FT their second derivative conclusion If "their" $\frac{d^2y}{d^2} > 0 \implies \text{minimum etc}$
			10	dx^2
	Total		10	

MPC1 (cont)					
Q	Solution	Marks	Total	Comments	
6(a)(i)	<i>B</i> (0,5)	B1			
	Area $AOB = \frac{1}{2} \times 1 \times 5$	M1		Condone slip in number or a minus sign	
	$= 2\frac{1}{2}$	A1	3		
	$3x^6 - 2x^2 - x^6$				
(ii)	$\frac{5x}{6} + \frac{2x}{2} + 5x$ or $\frac{x}{2} + x^2 + 5x$	M1		Raise one power by 1	
	$0 \qquad 2 \qquad 2$		3	All correct unsimplified	
	(may have + c of not)	AI	5	An concer unsimplified	
(iii)	Area under curve = $\int_{-1}^{0} f(x) dx$	B1		Correctly written or $F(0) - F(-1)$ correct	
		M1		Attempt to sub limit(s) of 1 (and 0)	
	$\begin{bmatrix} 0 \end{bmatrix} - \begin{bmatrix} \frac{1}{2} + 1 - 5 \end{bmatrix}$	1011		Must have integrated	
	Area under curve = $3\frac{1}{2}$	A1		CSO (no fudging)	
	Area of shaded region = $3\frac{1}{2} - 2\frac{1}{2} = 1$	B1√	4	FT their integral and triangle (very	
				generous)	
(b)(i)	dv	M1		One term correct	
	$\frac{1}{dx} = 15x^4 + 2$	A1		All correct (no +c etc)	
	when $x = -1$, gradient = 17	A1	3	cso	
(ii)	y = "their gradient"($x + 1$)	B1√	1	Must be finding tangent – not normal	
				any form e.g. $y = 17x + 17$	
7(a)	Total		14		
/(a)	$b^2 - 4ac = 144 - 4(k+1)(k-4)$	M1		Clear attempt at $b^2 - 4ac$ Condone slip in one term of expression	
	Real roots when $b^2 - 4ac \ge 0$	B1		Not just a statement, must involve k	
	$36 - (k^2 - 3k - 4) > 0$				
	$ \Rightarrow b^2 2b 40 \le 0 $	A 1	2	AC (watch signs corofully)	
	$\rightarrow \kappa - 5\kappa - 40 \leqslant 0$	AI	5	AG (watch signs carefully)	
(b)	(k-8)(k+5)	M1		Factors attempt or formula	
	Critical points 8 and –5	A1		1 I	
	Sketch or sign diagram correct , must have	2.01		+ve -ve +ve	
	8 and -5		4		
	$-J \leqslant \kappa \leqslant 0$		4	-5 8	
	A0 for $-5 < k < 8$ or two separate				
	inequalities unless word AND used				
	Total		7		
	TOTAL		75		

General Certificate of Education

Mathematics 6360

MPC1 Pure Core 1

Mark Scheme

2007 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2007 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme and abbreviations used in marking

Μ	mark is for method					
m or dM	mark is dependent on one or more M marks and is for method					
А	mark is dependent on M or m marks and is for accuracy					
В	mark is independent of M or m marks and	d is for method	and accuracy			
Е	mark is for explanation					
\sqrt{or} ft or F	follow through from previous					
	incorrect result	MC	mis-copy			
CAO	correct answer only	MR	mis-read			
CSO	correct solution only	RA	required accuracy			
AWFW	anything which falls within	FW	further work			
AWRT	anything which rounds to	ISW	ignore subsequent work			
ACF	any correct form	FIW	from incorrect work			
AG	answer given	BOD	given benefit of doubt			
SC	special case	WR	work replaced by candidate			
OE	or equivalent	FB	formulae book			
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme			
–x EE	deduct <i>x</i> marks for each error	G	graph			
NMS	no method shown	c	candidate			
PI	possibly implied	sf	significant figure(s)			
SCA	substantially correct approach	dp	decimal place(s)			

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

June 07

MPC	1				
	Q	Solution	Marks	Total	Comments
	1(a)(i)	Gradient $AB = \frac{-1-5}{6-2}$ or $\frac{51}{2-6}$	M1		$\pm \frac{6}{4}$ implies M1
		$=\frac{-6}{4}=-\frac{3}{2}$	A1	2	AG
	(ii)	$ \begin{cases} y-5\\ y+1 \end{cases} = -\frac{3}{2} \begin{cases} (x-2)\\ (x-6) \end{cases} $	M1		or $y = -\frac{3}{2}x + c$ and attempt to find <i>c</i>
		\Rightarrow 3x + 2y = 16	A1	2	OE; must have integer coefficients
	(b)(i)	Gradient of perpendicular $=\frac{2}{3}$	M1		or use of $m_1 m_2 = -1$
		$\Rightarrow y-5=\frac{2}{3}(x-2)$	A1	2	3y - 2x = 11 (no misreads permitted)
	(ii)	Substitute $x = k$, $y = 7$ into their (b)(i)	M1		or grads $\frac{7-5}{k-2} \times \frac{-3}{2} = -1$
		$\Rightarrow 2 = \frac{2}{3}(k-2) \Rightarrow k = 5$	A1	2	or Pythagoras $(k-2)^{2} = (k-6)^{2} + 8$
		Total		8	
	2(a)	$\frac{\sqrt{63}}{3} = \sqrt{7}$ or $\frac{3\sqrt{7}}{3}$	B1		or $\frac{\left(\sqrt{7}\sqrt{63} + 14 \times 3\right)}{3\sqrt{7}}$
		$\frac{14}{\sqrt{7}} = 2\sqrt{7}$ or $\frac{14\sqrt{7}}{7}$	B1		or $\frac{\sqrt{7}}{\sqrt{7}}$ () M1
		\Rightarrow sum = $3\sqrt{7}$	B1	3	\Rightarrow correct answer with all working correct A2
	(b)	Multiply by $\frac{\sqrt{7}+2}{\sqrt{7}+2}$	M1		
		Denominator = $7 - 4 = 3$	A1		
		Numerator = $\left(\sqrt{7}\right)^2 + \sqrt{7} + 2\sqrt{7} + 2$	m1		multiplied out (allow one slip) $9 + 3\sqrt{7}$
		Answer = $\sqrt{7+3}$	A1	4	
		Total		7	

MPC1 (con	MPC1 (cont)					
Q	Solution	Marks	Total	Comments		
3(a)(i)	$(x+5)^2$	B1		<i>p</i> = 5		
	-6	B1	2	q = -6		
(ii)	$x_{\text{vertex}} = -5$ (or their $-p$)	B 1.∕		may differentiate but must have $x = -5$		
(11)	$y_{\text{vertex}} = -6$ (or their q)	B1	2	and $y = -6$. Vertex $(-5, -6)$		
(iii)	x = -5	B1	1			
(iv)	Translation (not shift, move etc)	E1		and NO other transformation stated		
	through $\begin{bmatrix} -5\\ -6 \end{bmatrix}$ (or 5 left, 6 down)	M1 A1	3	either component correct M1, A1 independent of E mark		
(b)	$x + 11 = x^2 + 10x + 19$			quadratic with all terms on one side of equation		
	$\Rightarrow x^2 + 9x + 8 = 0$ or $y^2 - 13y + 30 = 0$	M1				
	(x+8)(x+1)=0 or $(y-3)(y-10)=0$	ml		attempt at formula (1 slip) or to factorise		
	$ \begin{array}{c c} x = -1 \\ y = 10 \end{array} \begin{array}{c} x = -8 \\ y = 3 \end{array} $	A1 A1	4	both x values correct both y values correct and linked		
				SC (-1,10) B2, (-8,3) B2 no working		
	Total		12			
4(a)(i)	$t^3 - 52t + 96$	M1		one term correct		
		A1	2	another term correct $(n_0 + c_0 t_0)$		
		AI	5			
(ii)	$3t^2 - 52$	M1		ft one term correct		
		A1√	2	ft all "correct"		
(b)	$\frac{\mathrm{d}y}{\mathrm{d}t} = 8 - 104 + 96$	M1		substitute $t = 2$ into their $\frac{dy}{dt}$		
	$= 0 \Rightarrow$ stationary value	A1		CSO; shown = $0 +$ statement		
	Substitute $t = 2$ into $\frac{d^2 y}{dt^2}$ (= -40)	M1		any appropriate test, e.g. $y'(1)$ and $y'(3)$		
	$\frac{\mathrm{d}^2 y}{\mathrm{d}t^2} < 0 \Longrightarrow \text{ max value}$	A1	4	all values (if stated) must be correct		
(c)	Substitute $t = 1$ into their $\frac{dy}{dt}$	M1		must be their $\frac{dy}{dt}$ NOT $\frac{d^2y}{dt^2}$		
	Rate of change = $45 \text{ (cm s}^{-1}\text{)}$	A1√	2	ft their $y'(1)$		
(d)	Substitute $t = 3$ into their $\frac{dy}{dt}$ (27-156+96=-33<0)	M1		interpreting their value of $\frac{dy}{dt}$		
	\Rightarrow decreasing when $t = 3$	E1√	2	allow increasing if their $\frac{dy}{dt} > 0$		
	Total		13	ui		

Q	Solution	Marks	Total	Comments
5(a)(i)	Centre $(-3, 2)$	M1		± 3 or ± 2
		A1	2	correct
(ii)	Radius = 5	B1	1	accept $\sqrt{25}$ but not $\pm\sqrt{25}$
(b)(i)	$3^{2} + (-4)^{2} = 9 + 16 = 25$ $\Rightarrow N$ lies on circle	B1	1	must have $9 + 16 = 25$ or a statement
(ii)		M1		must draw axes; ft their centre in correct quadrant
	O x x N	A1	2	correct (reasonable freehand circle enclosing origin)
(iii)	Attempt at gradient of CN	M1		withhold if subsequently finds tangent
	grad $CN = -\frac{4}{-4}$	A1		CSO
	$y = -\frac{4}{3}x - 2 \text{(or equivalent)}$	A1√	3	ft their grad <i>CN</i>
(c)(i)	$P(2,6)$ Hence $PC^2 = 5^2 + 4^2$	M1		"their" PC^2
	$\Rightarrow PC = \sqrt{41}$	A1	2	
(ii)	Use of Pythagoras correctly	M1		
	$PT^{2} = PC^{2} - r^{2} = 41 - 25$, where <i>T</i> is a point of contact of tangent	A1√		ft their PC^2 and r^2
	$\Rightarrow PT = 4$	A1	3	Alternative sketch with vertical tangent M1 showing that tangent touches circle at point $(2, 2)$ A1 hence $PT = 4$ A1
	Total		14	

Q	Solution	Marks	Total	Comments
6(a)(i)	f(1) = 1 + 4 - 5	M1		must find $f(1)$ NOT long division
	\Rightarrow f(1) = 0 \Rightarrow (x-1) is factor	A1	2	shown $= 0$ plus a statement
(ii)	Attempt at $x^2 + x + 5$	M1		long division leading to $x^2 \pm x +$ or equating coefficients
	$f(x) = (x-1)(x^2 + x + 5)$	A1	2	p = 1, q = 5 by inspection scores B1, B1
(iii)	(x =) 1 is real root	B1		
	Consider $b^2 - 4ac$ for their $x^2 + x + 5$	M1		not the cubic!
	$b^2 - 4ac = 1^2 - 4 \times 5 = -19 < 0$			
	Hence no real roots (or only real root is 1)	A1	3	CSO; all values correct plus a statement
	r^4	M1		one term correct unsimplified
(b)(i)	$\int \dots dx = \frac{x}{4} + 2x^2 - 5x (+c)$	A1		second term correct unsimplified
		Al	3	all correct unsimplified
(::)	$[4+8-10] - [\frac{1}{2}+2-5]$	M1		correct use of limits 1 and 2;
(11)	$\begin{bmatrix} 4 + 8 - 10 \end{bmatrix} - \begin{bmatrix} -4 + 2 - 5 \end{bmatrix}$	MII		F(2) - F(1) attempted
	$=4\frac{3}{2}$	A1		
	4			
	Area of $\Delta = \frac{1}{2} \times 11 = 5\frac{1}{2}$	B1		correct unsimplified
	\Rightarrow shaded area = $5\frac{1}{2} - 4\frac{3}{4}$			combined integral of $7x-6-x^3$ scores M1 for limits correctly used then
	$=\frac{3}{4}$	A1	4	A3 correct answer with all working correct
	Total		14	
7(a)	$b^2 - 4ac = 4 - 4(k-1)(2k-3)$	M1		(or seen in formula) condone one slip
	Real roots when $b^2 - 4ac \ge 0$	E1		must involve $f(k) \ge 0$ (usually M1 must be earned)
	$4-4(2k^2-5k+3) \ge 0$			
	$\Rightarrow -2k^2 + 5k - 3 + 1 \ge 0$			at least one step of working justifying ≤ 0
	$\Rightarrow 2k^2 - 5k + 2 \leqslant 0$	A1	3	AG
(b)(i)	(2k-1)(k-2)	B1	1	
(ii)	(Critical values) $\frac{1}{2}$ and 2	B1√		ft their factors or correct values seen on diagram, sketch or inequality or stated
	+ - + $\frac{1}{2}$ 2	M1		use of sketch / sign diagram
	$\Rightarrow 0.5 \leq k \leq 2$	A1	3	M1A0 for $0.5 < k < 2$ or $k \ge 0.5$, $k \le 2$
	Total		7	
	TOTAL		75	

MPC1 (cont)

ALLIANCE

General Certificate of Education

Mathematics 6360

MPC1 Pure Core 1

Mark Scheme

2008 examination - January series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2008 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX Dr Michael Cresswell Director General

Μ	mark is for method					
m or dM	mark is dependent on one or more M marks and is for method					
А	mark is dependent on M or m marks and is for accuracy					
В	mark is independent of M or m marks and is	for method and a	accuracy			
E	mark is for explanation					
$\sqrt{100}$ or ft or F	follow through from previous					
	incorrect result	MC	mis-copy			
CAO	correct answer only	MR	mis-read			
CSO	correct solution only	RA	required accuracy			
AWFW	anything which falls within	FW	further work			
AWRT	anything which rounds to	ISW	ignore subsequent work			
ACF	any correct form	FIW	from incorrect work			
AG	answer given	BOD	given benefit of doubt			
SC	special case	WR	work replaced by candidate			
OE	or equivalent	FB	formulae book			
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme			
–x EE	deduct <i>x</i> marks for each error	G	graph			
NMS	no method shown	С	candidate			
PI	possibly implied	sf	significant figure(s)			
SCA	substantially correct approach	dp	decimal place(s)			

Key to mark scheme and abbreviations used in marking

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

MPC1				
Q	Solution	Marks	Total	Comments
1 (a)	Mid-point of $BC = (3, -2)$	B1		Either coordinate correct
		B1	2	Both cords correct. Accept $x = 3$, $y = -2$
	A., 2 1			2
(b)(i)	$\frac{\Delta y}{\Delta x} = \frac{3-1}{2}$	M1		$\pm \frac{2}{6}$ OE implies M1
	$\Delta x = -2 - 4$			0
	$=-\frac{1}{3}$	A1	2	
(ii)	y-3 = "their grad"($x + 2$) or	M1		Or $y = mx + c$ and correct attempt to
	y-1 = "their grad"($x - 4$)	IVI I	_	find <i>c</i>
	Hence $x + 3y = 7$	Al	2	
(iii)	y + 5 = "their grad AB" $(x - 2)$	M1		Or "their $x + qy = c$ " and attempt to find c
()			•	
	$y+5 = -\frac{1}{3}(x-2)$ or $x+3y+13 = 0$	AI	2	OE
(c)	Grad $BC = 3$ (from $\frac{\Delta y}{\Delta y} = \frac{1+5}{2}$ OE)	B1		Or 2 lengths correct:
	$\Delta x 4-2$			$AB = \sqrt{40}; BC = \sqrt{40}; AC = \sqrt{80}$
	$m_1 m_2 = -1$ stated or			
	grad $BC = 3$ and grad $AB = -\frac{1}{2}$ or	2.61		
		MI		Or attempt at Pythagoras or Cosine Rule
	grad $BC \times \text{grad } AB (=3 \times -\frac{1}{2})$			
	Product of gradients = -1 Hence AB and BC are perpendicular	Al CSO	3	$AC^2 = AB^2 + BC^2 \Rightarrow \angle ABC = 90^\circ$
	Tence <i>TD</i> and <i>DC</i> are perpendicular	0.50	11	Completing proof and statement
	10tai	M1	11	Reduce one power by 1
2(a)	$\frac{dy}{dt} = 4x^3 - 32$	A1		One term correct
	dx	A1	3	All correct (no $+ c$ etc)
(b)	Stationary point $\Rightarrow \frac{dy}{dt} = 0$	M1		
	dx			dy
	$\Rightarrow x^3 = 8$	A1√		$x^n = k$ following from their $\frac{dy}{dr}$
	$\Rightarrow x = 2$	A1	3	CSO
			-	
$(\mathbf{a})(\mathbf{i})$	$d^2 y_{-12r^2}$	B 1.≜	1	ET their $\frac{dy}{dy}$
(()(1)	$\frac{1}{\mathrm{d}x^2}$ -12x	DIV	1	dx
	-2			
(ii)	When $x = 2$, $\frac{d^2 y}{d^2}$ considered	M1		Or complete test with $2 \pm \varepsilon$ using $\frac{dy}{dz}$
	dx^2		2	dx
	\rightarrow minimum point	EI√	2	
	b dv dv			
(d)	Putting $x = 0$ into their $\frac{-y}{dx}$ (= -32)	M1		
	dy dy		2	Allow "in an acting" if the dy
	$\frac{1}{dx} < 0 \Rightarrow decreasing$	AI√	2	Allow "increasing" if their $\frac{1}{dx} > 0$
	Total		11	

MPC1 (cont	MPC1 (cont)					
Q	Solution		Marks	Total	Comments	
3 (a)	$5\sqrt{8} = 10\sqrt{2}$		B1		Or $\frac{5\sqrt{16}+6}{\sqrt{2}}$ gets B1	
	$\frac{6}{\sqrt{2}} = \frac{6\sqrt{2}}{2}$ (=3 $\sqrt{2}$)		M1		then M1 for rationalising; and A1 answer	
	Answer = $13\sqrt{2}$		A1	3	<i>n</i> = 13	
(b)	$\frac{\sqrt{2}+2}{3\sqrt{2}-4} \times \frac{3\sqrt{2}+4}{3\sqrt{2}+4}$		M1		Multiplying top & bottom by $\pm (3\sqrt{2} + 4)$	
	Numerator = $6 + 6\sqrt{2} + 4\sqrt{2} + 8$		m1		Multiplying out (condone one slip)	
	Denominator = $18 - 16$ (= 2)		B1			
	Final answer = $5\sqrt{2} + 7$		A1	4		
		Total		7		
4(a)	$x^{2} + (y-5)^{2}$		B1		b = 5	
	RHS = 5		B1	2	<i>k</i> = 5	
(b)(i)	Centre (0, 5)		B 1√	1	FT their b from part (a)	
(ii)	Radius = $\sqrt{5}$		B 1√	1	FT their k from part (a); RHS must be > 0	
(c)(i)	$x^{2} + 4x^{2} - 20x + 20 = 0$		M1		May substitute into original or "their (a)"	
	$\Rightarrow x^2 - 4x + 4 = 0$		A1	2	CSO; AG	
(ii)	$(x-2)^2 = 0$ or $x = 2$		M1			
	Repeated root implies tangent		E1		Or $b^2 - 4ac$ shown = 0 plus statement	
	Point of contact is $P(2, 4)$		A1	3		
(d)	$\left(CQ^2=\right)1^2+1^2$		M1		FT their C	
	$\sqrt{2} < \sqrt{5} \Rightarrow Q$ lies inside circle		A1 CSO	2	CQ or CQ^2 OE must appear for A1	
		Total		11		
5(a)	(9+x)(1-x)		M1	2	$\frac{\pm (9 \pm x)(1 \pm x)}{2}$	
			AI	2	Correct factors	
(b)	$25 - (x^2 + 8x + 16) = 9 - 8x - x^2$		B1	1	AG	
(c)(i)	x = -4 is line of symmetry		B1	1		
(ii)	Vertex is (-4, 25)		B1,B1	2		
(iii)			M1		General ∩ shape	
	(a)		B1		–9 and 1 marked on x-axis or stated	
			A1	3	9 marked on y-axis and maximum to the	
	-9/ 1				left of y-axis	
	1 J X	Total		0	Must continue below <i>x</i> -axis at both ends	
L		Total		У		

Q	Solution	Marks	Total	Comments
6(a)(i)	p(-1) = -1 + 7 - 6	M1		Finding p(–1)
	= 0 therefore $x + 1$ is a factor	A1	2	Shown to $= 0$ plus statement
(ii)	$p(x) = (x+1)(x^2 - x - 6)$	M1		Long division/inspection (2 terms correct)
		A1		Quadratic factor correct
	p(x) = (x+1)(x+2)(x-3)	A1	3	May earn M1,A1 for correct second factor then A1 for $(x+1)(x+2)(x-3)$
(b)(i)	A(-2,0)	B1	1	Condone $x = -2$
(;;)	$x^4 - 7x^2$	M1		One term correct
(11)	$\frac{-4}{2} - \frac{-6x}{2} + -6x$			Another term correct
	(may have $+ c$ or not)	Al		All correct unsimplified
	$\left\lfloor \frac{81}{4} - \frac{63}{2} - 18 \right\rfloor - \left\lfloor \frac{1}{4} - \frac{7}{2} + 6 \right\rfloor$	m1		F(3) - F(-1) attempted in correct order
	= - 32	A1	5	CSO; OE
(iii)	Area of shaded region $= 32$	B 1√	1	FT their (b)(ii) but positive value needed
	dy	M1		One term correct
(iv)	$\frac{dy}{dt} = 3x^2 - 7$			All correct ($n_0 \pm c$ etc)
	ux When $x = 1$ gradient = 4		3	
	when $x = -1$, gradient $= -4$	AI	5	
(v)	Gradient of normal = $\frac{1}{-}$	B 1√		
	$y =$ "their gradient" ($x \pm 1$)	M1		Must be finding normal , not tangent
	$y = \frac{1}{(x+1)}$	A 1	2	CSO: any correct form on $4y = 1$
	$y = \frac{1}{4}(x+1)$	AI	5	CSO; any correct form eg $4y - x = 1$
	Total		18	
7(a)	$x^{2} + 7 = k(3x+1) \Longrightarrow x^{2} - 3kx + 7 - k = 0$	B1	1	AG
(b)	$b^2 - 4ac = (-3k)^2 - 4(7 - k)$	M1		Clear attempt at $b^2 - 4ac$
	(2 distinct roots when) $b^2 - 4aa > 0$	R 1		Must involve k
	(2 distinct roots when) b = 4ac > 0		2	CSO: AG
	$9\kappa + 4\kappa - 28 > 0$	AI	3	C50, A0
(c)	(9k - 14)(k + 2)	M1		Factors or formula correct unsimplified
	Critical points -2 and $\frac{14}{9}$	A1		
	Sketch \cup or sign diagram correct	M1		$\begin{array}{ c c c c } \hline +\mathbf{ve} & -\mathbf{ve} & +\mathbf{ve} \\ \hline & -2 & \frac{14}{9} \\ \hline \end{array}$
	$k < -2, k > \frac{14}{9}$	A1	4	
	Total		8	
	TOTAL		75	

MPC1 (cont)

ALLIANCE

General Certificate of Education

Mathematics 6360

MPC1 Pure Core 1

Mark Scheme

2008 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2008 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX Dr Michael Cresswell Director General

М	mark is for method					
m or dM	mark is dependent on one or more M marks and is for method					
А	mark is dependent on M or m marks and is for accuracy					
В	mark is independent of M or m marks and is	for method and a	accuracy			
Е	mark is for explanation					
$\sqrt{10}$ or ft or F	follow through from previous					
	incorrect result	MC	mis-copy			
CAO	correct answer only	MR	mis-read			
CSO	correct solution only	RA	required accuracy			
AWFW	anything which falls within	FW	further work			
AWRT	anything which rounds to	ISW	ignore subsequent work			
ACF	any correct form	FIW	from incorrect work			
AG	answer given	BOD	given benefit of doubt			
SC	special case	WR	work replaced by candidate			
OE	or equivalent	FB	formulae book			
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme			
–x EE	deduct <i>x</i> marks for each error	G	graph			
NMS	no method shown	С	candidate			
PI	possibly implied	sf	significant figure(s)			
SCA	substantially correct approach	dp	decimal place(s)			

Key to mark scheme and abbreviations used in marking

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

MPC1				
Q	Solution	Marks	Total	Comments
1(a)	<i>L</i> : straight line with positive gradient and	B1		Line must cross both axes but need not
	negative intercept on y-axis	D 1		reach the curve
	cutting at $\left(\frac{1}{3},0\right)$ and $\left(0,-1\right)$	BI		Condone 0.33 or better for $\frac{1}{3}$
	(intercepts stated or marked on sketch)			
	C: attempt at parabola \cup or \cap through (-3,0) and (1,0) or	B1		y ↑ //
	values –3 and 1 stated as intercepts on <i>x</i> -axis			
	\cup shaped graph – vertex below <i>x</i> -axis and cutting <i>x</i> -axis twice	M1		-3 -1 x
	through $(0,-3)$ and minimum point	A 1	5	$ \qquad \qquad$
	to left of <i>y</i> -axis	AI	5	(y-intercept or coordinates marked)
(b)	(x+3)(x-1) = 3x-1	M1		
	$r^{2} + 3r - r - 3 - 3r + 1 = 0$			
	$\Rightarrow r^2 - r - 2 = 0$	A1	2	AG; must have " $= 0$ " and no errors
	$\rightarrow x$ $x = 0$			-,
(c)	(x-2)(x+1) = 0	M1		$(x \pm 1)(x \pm 2)$ or use of formula (one slip)
	$\Rightarrow x = 2, -1$	A1		correct values imply M1A1
	Substitute one value of <i>x</i> to find <i>y</i>	m1		
	Points of intersection $(2, 5)$ and $(-1, -4)$	A1	4	May say $x = 2, y = 5$ etc
				$SC: (2, 5) \Rightarrow B2$
				$(-1, -4) \Rightarrow B2$ without working
	Total		11	
2(a)	xy = 6	B1	1	B0 for $\sqrt{36}$ or ± 6
	v $2\sqrt{3}$ 12 4 $\sqrt{12}$ $\sqrt{3}$			
(b)	$\frac{1}{x} = \frac{1}{\sqrt{3}}$ or $\sqrt{\frac{1}{3}}$ or $\sqrt{\frac{1}{1}}$ or $\frac{1}{\sqrt{3}} \times \frac{1}{\sqrt{3}}$	M1		Allow M1 for ± 2
	=2	A1	2	
(c)	$x^{2} + 2xy + y^{2}$ or $(\sqrt{3} + 2\sqrt{3})^{2}$ correct	M1		or $(\sqrt{3} + \sqrt{12})(\sqrt{3} + \sqrt{12})$ expanded as
				4 terms – no more than one slip
	Correct with 2 of x^2 , y^2 , $2xy$ simplified	A1		Correct but unsimplified – one more step
	$3 + 2\sqrt{36} + 12$ or $3^2 \times 3$ or $(3\sqrt{3})^2$			
	= 27	A1	3	
	Total		6	

MPC1 (cont)							
Q	Solution	Marks	Total	Comments			
3 (a)	$V = x(9-3x)^2$	M1		Attempt at <i>V</i> in terms of <i>x</i> (condone slip when rearranging formula for $y = 9 - 3x$) or $(9-3x)^2 = 81-54x+9x^2$			
	$V = r(81 - 54r + 9r^2)$						
	$= 81x - 54x^2 + 9x^3$	A1	2	AG; no errors in algebra			
(b)(i)	$\frac{\mathrm{d}V}{\mathrm{d}x} = 81 - 108x + 27x^2$	M1 A1 A1		One term correct Another correct All correct (no $+ c$ etc)			
	$= 27(x^2 - 4x + 3)$	A1	4	CSO; all algebra and differentiation correct			
(ii)	(x-3)(x-1) or $(27x-81)(x-1)$ etc $\Rightarrow x=1, 3$	M1 A1	2	"Correct" factors or correct use of formula			
				SC: B1,B1 for $x = 1$, $x = 3$ found by inspection (provided no other values)			
(c)	$\frac{\mathrm{d}^2 V}{\mathrm{d}x^2} = -108 + 54x \text{(condone one slip)}$	M1		ft their $\frac{dV}{dx}$ (may have cancelled 27 etc)			
		A1	2	CSO; all differentiation correct			
(d)(i)	$x=3 \Rightarrow \frac{d^2V}{dx^2}=54; x=1 \Rightarrow \frac{d^2V}{dx^2}=-54$	B1√	1	ft their $\frac{d^2 V}{dx^2}$ and their two <i>x</i> -values			
(ii)	(x =) 1 (gives maximum value)	E1	1	Provided their $\frac{d^2 V}{dx^2} < 0$			
(iii)	$V_{\rm max} = 36$	B1	1	САО			
	Total		13				
4(a)	$\left(x-\frac{3}{2}\right)^2$	B1		Must have $()^2 p=1.5$			
	$+\frac{7}{4}$	B1	2	<i>q</i> =1.75			
(b)	Minimum value is $\frac{7}{4}$	B 1√	1	ft their q or correct value			
(c)	Translation (and no other transformation stated)	E1		(not shift, move, transformation etc)			
	through $\begin{bmatrix} 3\\2 \end{bmatrix}$ (or equivalent in words)	M1		M1 for one component correct or ft their p or q values			
	$\left\lfloor \frac{7}{4} \right\rfloor$ (or equivalent in words)	A1	3	CSO; condone 1.5 right and 1.75 up etc			
	Total		6				

5
MPC1 (cont)			
Q	Solution	Marks	Total	Comments
5(a)	$\operatorname{Grad} AC = \frac{15}{3} = 5$	B1		OE
	Equation of AC: $y = m(x+2)$ or $(y-15) = m(x-1)$	M1		Or use of $y = mx + c$ with (-2, 0) or (1, 15) correctly substituted for x and y
	y = 5x + 10	A1	3	OE eg $y - 15 = 5(x - 1)$, $y = 5(x + 2)$
(b)(i)	$\left[16x - \frac{x^5}{5}\right]$	M1 A1 A1		Raise one power by 1 One term correct All correct
	$\left(16-\frac{1}{5}\right)-\left(-32+\frac{32}{5}\right)$	m1		F(1) - F(-2) attempted
	$=41\frac{2}{5}$ (or 41.4, $\frac{207}{5}$ etc)	A1	5	CSO; withhold if $+ c$ added
(ii)	Area $\Delta = \frac{1}{2} \times 3 \times 15$ or $22\frac{1}{2}$ or 22.5	B1		Or $\int_{-2}^{1} (5x+10) dx = 22.5$
	Shaded area = "their (b)(i) answer" – correct triangle	M1		Condone "difference" if $\Delta > \int$
	\Rightarrow shaded area = $18\frac{9}{10}$	A1	3	CSO; OE (18.9 etc)
	Total		11	
6(a)	Remainder = $p(1) = 1 + 1 - 8 - 12$ = -18	M1 A1	2	Use of p(1) NOT long division
(b)(i)	p(-2) = -8 + 4 + 16 - 12 = 0 \Rightarrow (x + 2) is factor	M1 A1	2	NOT long division $p(-2)$ shown = 0 and statement
(ii)	Quad factor by comparing coefficients or $(x^2 + kx \pm 6)$ by inspection	M1		Or full long division or attempt at Factor Theorem using $f(\pm 3)$
	$p(x) = (x+2)(x^2 - x - 6)$	A1		Correct quadratic factor or $(x-3)$ shown to be factor by Factor Theorem
	$p(x) = (x+2)^2(x-3)$ or (x+2)(x+2)(x-3)	A1	3	CSO; SC: B1 for $(x+2)(x^{***})(x-3)$ by inspection or without working
(c)(i)	(<i>k</i> =) -12	B1	1	Condone $y = -12$ or $(0, -12)$
(ii)	◆ ^y /	M1 A1		Cubic shape (one max and one min) Maximum at (-2,0) and through (3,0) – at least one of these values marked
	-2 $3/x$	A1	3	"correct" graph as shown (touching smoothly at -2 , 3 marked and minimum to right of <i>y</i> -axis)
	Total		11	

MPC1 (cont	IPC1 (cont)					
Q	Solution	Marks	Total	Comments		
7 (a)	$(x-8)^2 + (y-13)^2$	B1		Exactly this with + and squares		
	$=13^{2}$	B1	2	Condone 169		
(b)(i)	grad $PC = \frac{12}{5}$	B1	1	Must simplify $\frac{-12}{-5}$		
(ii)	grad of tangent $=\frac{-1}{\text{grad }PC} = -\frac{5}{12}$	B1√		Condone $-\frac{1}{2.4}$ etc		
	tangent has equation $y-1 = -\frac{5}{12}(x-3)$	M1 A1		ft gradient but M0 if using grad <i>PC</i> Correct – but not in required final form		
	5x + 12y = 27 OE	A1	4	MUST have integer coefficients		
(iii)	half chord $= 5$	B1		Seen or stated		
	$P \xrightarrow{13} Q (\text{provided } r > 5)$	M1		Pythagoras used correctly $d^2 = 13^2 - 5^2$		
	Distance = 12	A1	3	CSO		
	Total		10			
8(a)	$b^2 - 4ac = 16k^2 - 36(k+1)$	M1		Condone one slip		
	Real roots: discriminant ≥ 0	B1				
	$\Rightarrow 16k^2 - 36k - 36 \ge 0$					
	$\Rightarrow 4k^2 - 9k - 9 \ge 0$	A1	3	AG (watch signs)		
(b)	(4k+3)(k-3)	M1		Or correct use of formula (unsimplified)		
	critical points $(k =) -\frac{3}{4}, 3$	A1		Not in a form involving surds Values may be seen in inequalities etc		
	$\frac{3}{4}$ 3 k sketch	M1		Or sign diagram		
	$k \ge 3, k \le -\frac{3}{4}$	A1	4	NMS full marks		
				Condone use of word "and" but final		
				answer in a form such as $3 \le k \le -\frac{3}{4}$		
				scores A0		
	Total		7			
	TOTAL		75			

General Certificate of Education

Mathematics 6360

MPC1 Pure Core 1

Mark Scheme

2009 examination - January series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2009 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme and abbreviations used in marking

Μ	mark is for method					
m or dM	mark is dependent on one or more M marks and is for method					
А	mark is dependent on M or m marks and is for accuracy					
В	mark is independent of M or m marks and is for method and accuracy					
E	mark is for explanation					
\sqrt{or} ft or F	follow through from previous					
	incorrect result	MC	mis-copy			
CAO	correct answer only	MR	mis-read			
CSO	correct solution only	RA	required accuracy			
AWFW	anything which falls within	FW	further work			
AWRT	anything which rounds to	ISW	ignore subsequent work			
ACF	any correct form	FIW	from incorrect work			
AG	answer given	BOD	given benefit of doubt			
SC	special case	WR	work replaced by candidate			
OE	or equivalent	FB	formulae book			
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme			
-x EE	deduct <i>x</i> marks for each error	G	graph			
NMS	no method shown	С	candidate			
PI	possibly implied	sf	significant figure(s)			
SCA	substantially correct approach	dp	decimal place(s)			

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

MPC1				
Q	Solution	Marks	Total	Comments
1 (a)	<i>M</i> (3, 2)	B1 B1	2	B1 for each coordinate
(b)	Gradient $AB = \frac{-2-6}{5-1} = \left(\frac{-8}{4}\right)$ $= -2$	M1 A1	2	May use coords of <i>M</i> instead of <i>A</i> or <i>B</i> - condone one slip CSO Answer must be simplified to -2
(c) (i)	Gradient of perpendicular = $\frac{1}{2}$	B1√		ft "their" -1 /gradient <i>AB</i>
	$\Rightarrow y-2=\frac{1}{2}(x-3)$	M1		attempt at perp to AB ; ft their M coords
	$\Rightarrow 2y - 4 = x - 3 \Rightarrow x - 2y + 1 = 0 \text{ AG}$	A1	3	CSO Must write down the printed answer
(ii)	$k-2(k+5)+1=0$ or $\frac{(k+5)-2}{k-3}=\frac{1}{2}$	M1		Sub into given line equation or correct expression involving gradients Condone omission of brackets or use of x
	$\Rightarrow k = -9$	A1	2	Condone $x = -9$ (Full marks for correct answer without working)
	Total		9	
2 (a)	(x-1)(2x-3)	B1	1	(1-x)(3-2x) or $2(x-1)(x-1.5)$ etc
(b)	Critical values are 1, $1\frac{1}{2}$ Sign diagram or sketch $\Rightarrow 1 < x < 1\frac{1}{2}$	B1√ M1 A1	3	Correct or ft their factors from (a) $ \frac{+ - + +}{1} $ $ \frac{11}{2} $ Full marks for correct inequality without working
	Total		4	
3(a)	$\frac{7+\sqrt{5}}{3+\sqrt{5}} \times \frac{3-\sqrt{5}}{3-\sqrt{5}}$	M1		Multiply by $\frac{3-\sqrt{5}}{3-\sqrt{5}}$ or $\frac{\sqrt{5}-3}{\sqrt{5}-3}$
	Numerator = $21+3\sqrt{5}-7\sqrt{5}-(\sqrt{5})^2$ Denominator = $9-5=4$	m1 B1		Condone one slip $16-4\sqrt{5}$ (Or $5-9 = -4$ from other conjugate)
	Answer = $4 - \sqrt{5}$	A1	4	CSO
(b)	$\sqrt{45} = 3\sqrt{5}$	B1		
	$\frac{20}{\sqrt{5}} = \frac{20\sqrt{5}}{5}$	M1		May score if combined as one expression Must have 5 in denominator
	Sum = $7\sqrt{5}$	A1	3	
	Total		7	

MPC1 (cont				
Q	Solution	Marks	Total	Comments
4(a)(i)	$(x+1)^2$	B1		p = 1
	+ 4	B1	2	q = 4
(ii)	$(x+1)^2 \ge 0 \Longrightarrow (x+1)^2 + 4 > 0$	E1	1	Condone if they say $(x+1)^2$ positive
	$(\Rightarrow x^2 + 2x + 5 > 0 \text{ for all values of } x)$			and adding 4 so always positive
(b)(i)	x = -1 or $y = 4$	M1		ft their $x = -p$ or $y = q$
	Minimum point is $(-1, 4)$	A 1	2	1 7 1
(ii)		AI B1	Z	Sketch roughly as shown
	5	B1	2	v-intercept 5 or (0, 5) marked or stated
	x	21	-	
(c)	Translation (not shift, move etc) $\begin{bmatrix} -1 \end{bmatrix}$	E1		and NO other transformation stated
	through $\begin{bmatrix} 1\\4 \end{bmatrix}$ (or 1 left, 4 up etc)	M1		either component correct or ft their $-p$, q
		A1	3	correct translation M1 A1 independent of F mark
	Total		10	
5(a)(i)	$\frac{dx}{dt} = 2t^3 - 40t + 66$	M1		one term correct
	a.	A1	3	another term correct all correct unsimplified $(n_0 + c_0)$
(ii)	$\frac{d^2x}{dt^2} = 6t^2 - 40$	M1	5	ft one term correct
()	dt^2	A1√	2	ft all "correct", 2 terms equivalent
(b)	$\frac{dx}{dt} = 54 - 120 + 66$	M1		substitute $t = 3$ into their $\frac{dx}{dt}$
	$= 0 \Rightarrow$ stationary value	A1		CSO
				snown = 0 (54 or 2×27 seen) and statement
	Substitute $t = 3$ into $\frac{d^2x}{dt^2}$ (= 14)	M1		
	$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} > 0 \implies \text{minimum value}$	A1	4	CSO; all values (if stated) must be correct
(c)	Substitute $t = 1$ into their $\frac{dx}{dt}$	M1		must be their $\frac{dx}{dt}$ NOT $\frac{d^2x}{dt^2}$ etc
	$\frac{\mathrm{d}x}{\mathrm{d}t} = 28$	A1√	2	ft their $\frac{\mathrm{d}x}{\mathrm{d}t}$ when $t = 1$
(d)	Substitute $t = 2$ into their $\frac{dx}{dt}$	M1		must be their $\frac{dx}{dt}$ NOT $\frac{d^2x}{dt^2}$ or x
	=16 - 80 + 66 = 2 (> 0)			Interpreting their value of $\frac{dx}{dt}$
	\Rightarrow increasing when $t = 2$	E1√	2	Allow decreasing if their $\frac{dx}{dt} < 0$
	Total		13	UI UI

Q	Solution	Marks	Total	Comments
6(a)(i)	p(2) = 8 + 2 - 10	M1		Must find p(2) NOT long division
	\Rightarrow p(2) = 0 \Rightarrow (x-2) is factor	A1	2	Shown = 0 plus a statement
(ii)	Attempt at long division (generous)	M1		Obtaining a quotient $x^2 + cx + d$ or equating coefficients (full method)
	$p(x) = (x-2)(x^2 + 2x + 5)$	A1	2	a = 2, b = 5 by inspection B1, B1
(b)(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 + 1$	M1 A1		One term correct All correct $-$ no $+c$ etc
	When $x = 2 \frac{dy}{dx} = 3 \times 4 + 1$	m1		Sub $x = 2$ into their $\frac{dy}{dx}$
	Therefore gradient at Q is 13	A1	4	CSO
(ii)	y = 13(x - 2)	M1		Tangent (NOT normal) attempted
		A1	2	CSO; correct in any form
	x^4 x^2 x^2	M1		one term correct
(iii)	$\int \dots dx = \frac{1}{4} + \frac{1}{2} - 10x (+c)$	A1	2	second term correct
		AI	3	all correct (condone no +c)
(iv)	[4+2-20]-[0] = -14	M1		F(2) attempted and possibly $F(0)$
				Must have earned M1 in (b)(iii)
	Area of shaded region $= 14$	A1	2	CSO; separate statement following correct evaluation of limits
	T ()		15	
	Total		15	

MPC1 (cont)

MPC1 (cont	VIPC1 (cont)					
Q	Solution	Marks	Total	Comments		
7(a)(i)	$(x-3)^{2} + (y+5)^{2}$ = 25 - 9 + 9 = 25 (= 5 ²)	B1 B1 B1	3	One term correct LHS correct with + and squares Condone RHS = 25		
(b)(i) (ii)	C(3,-5) Radius = 5	B1√ B1√	2	Correct or ft their RHS provided > 0		
(c)(i)	$(7-3)^2 + (-2+5)^2 = 16+9 = 25$			Or sub'n of $(7, -2)$ in original equation		
	$\Rightarrow D$ lies on circle	B1	1	$7^{2} + (-2)^{2} - 42 - 20 + 9 = 0$		
	Must see statement		1	Or sub $x=7$ into eqn & showing $y = -2$ etc		
(ii)	Attempt at gradient of CD as normal	M1		withhold if subsequently uses $m_1 m_2 = -1$		
	grad $CD = \frac{-2 - (-5)}{7 - 3} = \frac{3}{4}$			$\frac{\Delta y}{\Delta x}$ (condone one slip) FT their centre C		
	$y+2 = \frac{3}{4}(x-7)$ or $y+5 = \frac{3}{4}(x-3)$	A1		Correct equation in any form $y = \frac{3}{4}x - \frac{29}{4}$		
	$\Rightarrow 3x - 4y = 29$	A1	3	CSO <i>Integer</i> coefficients Condone $4y - 3x + 29 = 0$ etc		
(d)(i)	y = kx sub'd into original circle equation $x^{2} + (kx)^{2} - 6x + 10kx + 9 = 0$	M1		or using their completed square form and multiplying out		
	$\Rightarrow (k^2 + 1)x^2 + 2(5k - 3)x + 9 = 0 \qquad \mathbf{AG}$	A1	2	CSO must see at least previous line for A1 any error such as $kx^2 = = k^2x^2$ gets A0		
(ii)	$4(5k-3)^2 - 36(k^2 + 1)$	M1		Discriminant in k (can be seen in quad formula)		
	$= 64k^2 - 120k$	A1		or $8k^2 - 15k = 0$ OE		
	Equal roots: $4(5k-3)^2 - 36(k^2+1) = 0$	B1		$b^2 - 4ac = 0$ clearly stated or evident by an equation in k with at most 2 slips.		
	$8k^2 - 15k = 0$					
		m1		Attempt to solve <i>their</i> quadratic or linear equation if k has been cancelled		
	$\Rightarrow k = 0, k = \frac{15}{8}$	A1	5	OE but must have <i>k</i> =0		
	0			If "=0" is not seen but correct values of k are found, candidate will lose B1 mark but may earn all other marks		
(iii)	(Line is a) tangent (to the circle)	E1	1	Line touches circle at one point		
	Total		17			
	TOTAL		75			

General Certificate of Education

Mathematics 6360

MPC1 Pure Core 1

Mark Scheme

2009 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2009 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

М	mark is for method				
m or dM	mark is dependent on one or more M marks and is for method				
А	mark is dependent on M or m marks and is for	or accuracy			
В	mark is independent of M or m marks and is	for method and a	accuracy		
E	mark is for explanation				
$\sqrt{100}$ or ft or F	follow through from previous				
	incorrect result	MC	mis-copy		
CAO	correct answer only	MR	mis-read		
CSO	correct solution only	RA	required accuracy		
AWFW	anything which falls within	FW	further work		
AWRT	anything which rounds to	ISW	ignore subsequent work		
ACF	any correct form	FIW	from incorrect work		
AG	answer given	BOD	given benefit of doubt		
SC	special case	WR	work replaced by candidate		
OE	or equivalent	FB	formulae book		
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme		
-x EE	deduct <i>x</i> marks for each error	G	graph		
NMS	no method shown	С	candidate		
PI	possibly implied	sf	significant figure(s)		
SCA	substantially correct approach	dp	decimal place(s)		

Key to mark scheme and abbreviations used in marking

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

MPCI		1		1
Q	Solution	Marks	Total	Comments
1(a)(i)	$y = -\frac{3}{5}x + \frac{11}{5}$	M1		Attempt at $y = f(x)$
	Or correct expression for gradient using two correct points			Or answer $=\frac{3}{5}$ or $-\frac{3}{5}x$ gets M1
				But answer of $\frac{3}{5}x$ gets M0
	(Gradient of $AB =$) $-\frac{3}{5}$	A1	2	Correct answer scores 2 marks . Condone error in rearranging formula if answer for gradient is correct.
(ii)	$m_1 m_2 = -1$	M1		Used or stated
	Gradient of perpendicular = $\frac{5}{3}$	A1√		ft their answer from (a)(i) or correct
	$y - 1 = \frac{5}{3}(x - 2) \qquad \text{OE}$	A1	3	$5x-3y=7$; or $y=\frac{5}{3}x+c$, $c=-\frac{7}{3}$ etc
				CSO
(b)	Eliminating x or y but must use 3x+5y=11 & 2x+3y=8	M1		An equation in <i>x</i> only or <i>y</i> only
	x = 7 $y = -2$	A1 A1	3	Answer only of $(7, -2)$ scores 3 marks
	Total		8	
2(a)	$\frac{5+\sqrt{7}}{3-\sqrt{7}} \times \frac{3+\sqrt{7}}{3+\sqrt{7}}$	M1		
	Numerator = $15 + 5\sqrt{7} + 3\sqrt{7} + 7$	m1		Condone one error or omission
	Denominator = $9 - 7 (= 2)$	B1		Must be seen as the denominator
	(Answer =) $11 + 4\sqrt{7}$	A1	4	
(b)	$(2\sqrt{5})^2 = 20$ or $(3\sqrt{2})^2 = 18$	B1		Either correct
	their $\left(2\sqrt{5}\right)^2 - \left(3\sqrt{2}\right)^2$	M1		Condone missing brackets and x^2
	$(x^2 = 20 - 18)$			$x^2 = 2 \implies B1, M1$
	$(\Rightarrow x =) \sqrt{2}$	A1	3	$\pm\sqrt{2}$ scores A0
				Answer only of 2 scores B0, M0 Answer only of $\sqrt{2}$ scores 3 marks
	Total		7	

Q	Solution	Marks	Total	Comments
	dy.	M1		One of these powers correct
3 (a)	$\frac{dy}{dx} = 5x^4 + 40x$	A1		One of these terms correct
	dx	A1	3	All correct (no $+ c$ etc)
(b)	$x = -2 \qquad \frac{dy}{dx} = 5 \times (-2)^4 + (40 \times -2)$ $\frac{dy}{dx} = 5 \times 16 + (40 \times -2) = 0$	M1		Substitute $x = -2$ into their $\frac{dy}{dx}$
	dx ,			
	\Rightarrow <i>P</i> is stationary point	A1		CSO Shown = 0 plus statement eg "st pt", "as required", "grad = 0"etc
	Or their $\frac{dy}{dx} = 0 \implies x^n = k$	(M1)		
	$x^3 = -8 \implies x = -2$	(A1)	2	CSO $x = 0$ need not be considered
(c)(i)	$\frac{d^2 y}{dx^2} = 20x^3 + 40$	B1√		Correct ft their $\frac{dy}{dx}$
	$= 20 \times (-2)^3 + 40$	M1		Subst $x = -2$ into their second derivative
	(=-160 + 40) = -120	A1	3	CSO
	(= 100 + 10) = 120		5	
(ii)	Maximum (value) their c(i) answer must be < 0 Other valid methods acceptable provided "maximum" is the conclusion	E1√	1	Accept minimum if their $c(i)$ answer > 0 and correctly interpreted Parts (i) and (ii) may be combined by candidate but -120 must be seen to award A1 in part (c)(i)
(d)	(When x = 1) y = 13	B1		
	When $x = 1$, $\frac{\mathrm{d}y}{\mathrm{d}x} = 5 + 40$	M1		Sub $x = 1$ into their $\frac{dy}{dx}$
	y = (their 45)x + k OE	m1		ft their $\frac{dy}{dx}$
	Tangent has equation $y - 13 = 45(x - 1)$	A1	4	CSO OE $y = 45x + c$, $c = -32$
	Total		13	

MPC1 (cont)

MPC1 (cont)			
Q	Solution	Marks	Total	Comments
4(a)(i)	p(3) = 27 - 3 + 6 (Remainder) = 30 Or long division up to remainder Quotient= $x^2 + 3x + 8$ and remainder = 30	M1 A1 (M1)		p(3) attempted
	clearly stated or indicated	(A1)	2	
(ii)	p(-2) = -8 + 2 + 6	M1		p(-2) attempted : NOT long division
	$p(-2)=0 \Rightarrow x+2$ is factor	A1	2	Shown = 0 plus statement
	Minimum statement required "factor"			May make statement <i>first</i> such as " $x+2$ is a factor if $p(-2) = 0$ "
(iii)	b = -2	B1		No working required for B1 + B1
	<i>c</i> = 3	B1		Try to mark first using B marks
	or long division/comparing coefficients	(M1)		Award M1 if B0 earned and a clear method is used
	$p(x) = (x+2)(x^2-2x+3)$	(A1)	2	Must write final answer in this form if long division has been used to get A1
(iv)	$b^2 - 4ac = (-2)^2 - 4 \times 3$	M1		Discriminant correct from their quadratic M0 if $b = -1$, $c = 6$ used (using cubic eqn)
	$b^2 - 4ac = -8$ (or < 0) \Rightarrow no (other) real roots	A1		CSO All values must be correct plus statement
	Or $(x-1)^2 + 2$	(M1)		Completion of square for their quadratic
	$(x-1)^2 + 2 > 0$ therefore no real roots Or $(x-1)^2 = -2$ has no real roots	(A1)	2	Shown to be positive plus statement regarding no real roots
(b)(i)	$(y_B =) 6$	B1	1	Condone (0, 6)
	$x^4 x^2$	M1		One term correct
(11)		Al Al		Another term correct All correct (ignore $+ c$ or limits)
	$\begin{bmatrix} \\ \\ \\ \end{bmatrix}_{2}^{0} = 0 - (4 - 2 - 12)$	m1		F(-2) attempted
	= 10	A1	5	CSO Clearly from $F(0) - F(-2)$
(iii)	Area of $\Delta = \frac{1}{2} \times 2 \times 6$	M1		Condone – 2 and ft their y_B value
				Or $\int_{-2}^{0} (3x+6) dx$ and attempt to integrate
	= 6 Shaded region area $= 10 - 6 = 4$	A1 A1	3	Must be positive allow –6 converted to +6 CSO 10 must come from correct working
	Total		17	

				~
Q	Solution	Marks	Total	Comments
5(a)(i)	C(5,-12)	B1	1	
(ii)	Radius = 13 (or $\sqrt{169}$)	B1	1	$\pm\sqrt{169}$ or ± 13 as final answer scores B0
(b)(i)	$(-5)^2 + 12^2$ or $25 + 144$ = 169 \Rightarrow circle passes through O	B1	1	Correct arithmetic plus statement
(ii)	Sketch y 10 x	B1		Eg " O lies on circle", "as required" etc Freehand circle through origin and cutting positive <i>x</i> -axis with centre in 4 th quadrant
	$25 + (p + 12)^{2} = 169$ (p + 12) = ±12	M1 A1	3	Condone value 10 missing or incorrect Or doubling their y_C -coordinate Condone use of y instead of p SC B2 for correct value of p stated or marked on diagram
(c)(i)	grad $AC = \frac{-12+7}{5+7}$	M1	2	correct expression, but ft their C
(ii)	$\frac{1}{12}$ grad tangent = $\frac{12}{5}$	B1 √	2	$\frac{-12}{-12}$ $\frac{-1}{\text{their grad } AC}$
	$y+7 = \frac{12}{5}(x+7)$	M1		ft "their $\frac{12}{5}$ " must be tangent and not AC
	$\Rightarrow 12x - 5y + 49 = 0$	A1	3	OE with integer coefficients with all
				terms on one side of the equation
<u> </u>	Total		11	

Q	Solution	Marks	Total	Comments
6(a)(i)	$\left(x-4\right)^2 \qquad or p=4$	B1		ISW for $p = -4$ if $(x-4)^2$ seen
	+ 1 or q = 1	B1	2	
(ii)	(Minimum value is) 1	B 1√	1	Correct or FT "their q " (NOT coords)
(iii)	(Minimum occurs when $x = 4$)	B1√	1	Correct or FT "their p " – may use calculus Condone (p , **) for this B1 mark
(b)(i)	$(x-5)^2 = x^2 - 10x + 25$	B1	1	
(ii)	$(x-5)^{2} + (7-x-4)^{2}$ = (x-5)^{2} + (3-x)^{2}	M1		Condone one slip in one bracket May be seen under $$ sign
	$= x^{2} - 10x + 25 + 9 - 6x + x^{2}$ $AB^{2} = 2x^{2} - 16x + 34$	A1		From a fully correct expression
	$= 2\left(x^2 - 8x + 17\right)$	A1	3	AG CSO
(iii)	Minimum $AB^2 = 2 \times$ "their (a)(ii)"	M1		Or use of their $x = 4$ in expression Or use of their $B(4, 3)$ and $A(5, 4)$ in distance formula
				M0 if calculus used
				Answer only of $2 \times$ "their (a)(ii)" scores
		A 1	2	M1, A0
	$\qquad \qquad $	AI	2	
	I Otal		10	

MPC1 (cont)

MPC1 (cont				
Q	Solution	Marks	Total	Comments
7(a)	$k(x^2+3)=2x+2$			
	$\Rightarrow kx^2 - 2x + 3k - 2 = 0$	B1	1	AG OE all terms on one side and $= 0$
(b)(i)	Discriminant = $(-2)^2 - 4k(3k-2)$	M1		Condone one slip (including x is one slip) Condone 2^2 or 4 as first term
	$=4-12k^{2}+8k$	A1		condone recovery from missing brackets
	Two distinct real roots $\Rightarrow b^2 - 4ac > 0$ $4 - 12k^2 + 8k > 0$	B 1√		"their discriminant in terms of k " > 0 Not simply the statement $b^2 - 4ac > 0$
	$\Rightarrow 12k^2 - 8k - 4 < 0$			Change from > 0 to < 0 and divide by 4
	$\Rightarrow 3k^2 - 2k - 1 < 0$	A1	4	AG CSO
(ii)	(3k+1)(k-1)	M1		Correct factors or correct use of formula
	Critical values 1 and $-\frac{1}{3}$	A1		May score M1, A1 for correct critical values seen as part of incorrect final answer with or without working
	Use of sign diagram or sketch	M1		If previous A1 earned, sign diagram or
	$-\frac{1}{3}$ 1			sketch must be correct for M1
	$+$ $-\frac{1}{3}$ $ 1$ $+$			Otherwise, M1 may be earned for an attempt at the sketch or sign diagram using their critical values.
	$\Rightarrow -\frac{1}{3} < k < 1 \qquad \text{or } 1 > k > -\frac{1}{3}$	A1	4	Full marks for correct final answer with or without working
	condone $-\frac{1}{k} < k$ AND $k < 1$ for full			
	$\frac{3}{3}$			
	marks but not OK or , instead of AND			1
				Answer only of $1 < k < -\frac{1}{3}$ or
				$k < -\frac{1}{3}; k < 1$ etc scores M1,A1,M0 since
				the correct critical values are evident
				Answer only of $\frac{1}{3} < k < 1$ etc where
				critical values are not both correct gets M0,M0
	Total		9	
	TOTAL		75	

General Certificate of Education

Mathematics 6360

MPC1 Pure Core 1

Mark Scheme

2010 examination - January series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2010 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX Dr Michael Cresswell Director General

Key to mark scheme and abbreviations used in marking

М	mark is for method						
m or dM	mark is dependent on one or more M marks and is for method						
А	mark is dependent on M or m marks and is for accuracy						
В	mark is independent of M or m marks and is	for method and a	accuracy				
E	mark is for explanation						
$\sqrt{100}$ or ft or F	follow through from previous						
	incorrect result	MC	mis-copy				
CAO	correct answer only	MR	mis-read				
CSO	correct solution only	RA	required accuracy				
AWFW	anything which falls within	FW	further work				
AWRT	anything which rounds to	ISW	ignore subsequent work				
ACF	any correct form	FIW	from incorrect work				
AG	answer given	BOD	given benefit of doubt				
SC	special case	WR	work replaced by candidate				
OE	or equivalent	FB	formulae book				
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme				
–x EE	deduct <i>x</i> marks for each error	G	graph				
NMS	no method shown	c	candidate				
PI	possibly implied	sf	significant figure(s)				
SCA	substantially correct approach	dp	decimal place(s)				

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

PhysicsAndMathsTutor.com

MPC1 - AQA GCE Mark Scheme 2010 January series

MPC1					Deleted: ¶
Q	Solution	Marks	Total	Comments	XMCA2¶
1 (a)	$p(-3)=(-3)^3-13(-3)-12$	M1		must attempt $p(-3)$ NOT long division	
	= -27 + 39 - 12				
	$= 0 \implies x+3 \text{ is factor}$	A1	2	shown $=0$ plus statement	
(b)	$(x+3)(x^2+bx+c)$	M1		Full long division, comparing coefficients or by inspection either $b=-3$ or $c=-4$	
	$(x^2 - 3x - 4)$ obtained	A1		or M1A1 for either $(x-4)$ or $(x+1)$	
		. 1		clearly found using factor theorem	
	(x+3)(x-4)(x+1)	AI	3	c.so; must be seen as a product of 3 factors NMS full marks for correct product	
				SC B1 for $(x+3)(x-4)($	
				or $(x+3)(x+1)($)	
				or $(x+3)(x+4)(x-1)$ NMS	
	Total		5		
2(a)(i)	grad $AB = \frac{7-3}{3-1}$	M1		$\frac{\Delta y}{\Delta x}$ correct expression, possibly implied	
	= 2 (must simplify 4/2)	A1	2		
(ii)	grad $BC = \frac{7-9}{3+1} = -\frac{2}{4}$	M1		Condone one slip NOT Pythagoras or cosine rule etc	
	grad $AB \times$ grad $BC = -1$ $\Rightarrow \angle ABC = 90^{\circ}$ or $AB \& BC$ perpendicular	A1	2	convincingly proved plus statement SC B1 for $-1/(\text{their grad } AB)$ or statement that $m_1m_2 = -1$ for perpendicular lines if M0 scored	
(b)(i)	M(0,6)	B2	2	B1 + B1 each coordinate correct	
(ii)	$(AB^{2} =)$ $(3-1)^{2} + (7-3)^{2}$ $(BC^{2} =)$ $(3+1)^{2} + (7-9)^{2}$	M1		either expression correct, simplified or unsimplified	
	$AB^{2} = 2^{2} + 4^{2} \text{ or } BC^{2} = 4^{2} + 2^{2}$ or $\sqrt{20}$ found as a length	A1		Must see either $AB^2 =$, or $BC^2 =$,	
	$AB^{2} = BC^{2} \implies AB = BC$ or $AB = \sqrt{20}$ and $BC = \sqrt{20}$	A1	3		
(iii)	grad $BM = \frac{7-6}{3-0}$ or $-1/(\text{grad } AC)$ attempted	M1		ft their <i>M</i> coordinates	
	$=\frac{1}{3}$	A1		correct gradient of line of symmetry	
	BM has equation $y = \frac{1}{3}x + 6$	A1	3	CSO, any correct form	
	Total		12		

0	Solution	Marks	Total	Comments
`	$dy = 4t^3$	M1		one term correct
3(a)(i)	$\frac{dy}{dt} = \frac{4t}{dt} - 4t + 4$	A1		another term correct
	dt = 8	A1	3	all correct (no $+ c$ etc) unsimplified
(ii)	$\frac{d^2 y}{dt^2} = \frac{12t^2}{8} - 4$	M1		ft one term "correct"
	u o	A1	2	correct unsimplified (penalise inclusion of $+c$ once only in question)
(b)	$t=2 \ ; \frac{\mathrm{d}y}{\mathrm{d}t} = 4-8+4$	M1		Substitute $t = 2$ into their $\frac{dy}{dt}$
	$\frac{\mathrm{d}y}{\mathrm{d}t} = 0 \Rightarrow$ stationary value	A1		CSO; shown = 0 plus statement
	$t=2; \frac{d^2 y}{dt^2}=6-4=2$	M1		Sub $t=2$ into their $\frac{d^2 y}{dt^2}$
	\Rightarrow y has MINIMUM value	A1	4	CSO
(c)(i)	$t=1; \frac{\mathrm{d}y}{\mathrm{d}t} = \frac{1}{2} - 4 + 4$	M1		Substitute $t = 1$ into their $\frac{dy}{dt}$
	$=\frac{1}{2}$	A1	2	OE; CSO
				NMS full marks if $\frac{dy}{dt}$ correct
(ii)	$\frac{dy}{dt} > 0 \Rightarrow$ (depth is) INCREASING	E1√	1	allow decreasing if states that their $\frac{dy}{dt} < 0$
				Reason must be given not just the word increasing or decreasing
	Total		12	
4(a)	$\sqrt{50} = 5\sqrt{2}$; $\sqrt{18} = 3\sqrt{2}$; $\sqrt{8} = 2\sqrt{2}$ At least two of these correct	M1		or $\times \frac{\sqrt{8}}{\sqrt{8}}$ or $\left(\times \frac{\sqrt{2}}{\sqrt{2}}\right)$ or $\sqrt{\frac{25}{4}} + \sqrt{\frac{9}{4}}$
	$\frac{5\sqrt{2}+3\sqrt{2}}{2\sqrt{2}}$	A1		any correct expression all in terms of $\sqrt{2}$ or with denominator of 8, 4 or 2
				simplifying numerator eg $\frac{\sqrt{400} + \sqrt{144}}{8}$
	Answer = 4	A1	3	CSO
(b)	$\frac{(2\sqrt{7}-1)(2\sqrt{7}-5)}{(2\sqrt{7}+5)(2\sqrt{7}-5)}$	M1		OE
	$numerator = 4 \times 7 - 2\sqrt{7} - 10\sqrt{7} + 5$	m1		expanding numerator (condone one error or omission)
	denominator = 3	B1		(seen as denominator)
	Answer = $11 - 4\sqrt{7}$	A1	4	
	Total		7	

Q	Solution	Marks	Total	Comments
5(a)	$x^2 - 8x + 15 + 2$	B1		Terms in x must be collected, PI
	their $(x-4)^2$ $(+k)$	M1		ft $(x-p)^2$ for their quadratic
	$=(x-4)^2+1$	A1	3	ISW for stating $p = -4$ if correct expression seen
(b)(i)		M1		\cup shape in any quadrant (generous)
	17 1 0 4 x	A1		correct with min at (4, 1) stated or 4 an marked on axes condone within first quadrant only
		B1	3	crosses y-axis at (0, 17) stated or 17 marked on y-axis
(ii)	y = k	M1		y = constant
	<i>y</i> =1	A1	2	Condone $y = 0x + 1$
(c)	Translation (not shift, move etc)	E1		and no other transformation
	with vector $\begin{bmatrix} 4 \\ 4 \end{bmatrix}$	M1		One component correct or ft either their p or q
		A1	3	CSO; condone 4 across, 1 up; or two separate vectors etc
	Total		11	

MPC1 (cont	t)			
Q	Solution	Marks	Total	Comments
6(a)(i)	$\frac{dy}{dt} = 24r - 19 - 6r^2$	M1		2 terms correct
	dx	A1		all correct (no + c etc)
	when $x=2$, $\frac{dy}{dx}=48 - 19 - 24$	m1		
	\Rightarrow gradient = 5	A1	4	CSO
(ii)	grad of normal $=-\frac{1}{5}$	B1√		ft their answer from (a)(i)
	$y+6 = \left(their - \frac{1}{5}\right)(x-2)$ or $y = \left(their - \frac{1}{5}\right)x + c$ and c evaluated using $x = 2$ and $y = -6$	M1		ft grad of their normal using correct coordinates BUT must not be tangent condone omission of brackets
	x + 5y + 28 = 0	A1	3	CSO; condone all on one side in different order
(b)(i)		M1		one term correct
(0)(1)	$\frac{12}{12}x^3 - \frac{19}{12}x^2 - \frac{2}{12}x^4$	Al		another term correct
	3 2 4	A1		all correct (ignore $+c$ or limits)
	=32-38-8	m1		F(2) attempted
	= -14	A1	5	CSO; withhold A1 if changed to +14 here
(ii)	Area $\Delta = \frac{1}{2} \times 2 \times 6 = 6$	B1		condone –6
	Shaded region area $=14-6$	M1		difference of $\pm \int \pm \Delta $
	= 8	A1	3	CSO
	Total		15	

Y	Solution	Marks	Total	Comments
7(a)(i)	$x = \pm 2$ or $y = \pm 6$ or $(x-2)^2 + (y+6)^2$	M1		
	C(2,-6)	A1	2	correct
(ii)	$(r^2 =)4 + 36 - 15$	M1		$(\text{RHS} =) their (-2)^2 + their (6)^2 - 15$
	$\Rightarrow r=5$	A1	2	Not ± 5 or $\sqrt{25}$
(b)	explaining why $ y_c > r$; 6 > 5	E1		Comparison of y_C and r , eg $-6 + 5 = -1$ or indicated on diagram
	full convincing argument, but must have correct v_c and r	E1	2	Eg "highest point is at $y = -1$ " scores E2
				E1: showing no real solutions when $y = 0$ +E1 stating centre or any point below <i>x</i> -axis
(c)(i)	$(PC^{2} =) (5-2)^{2} + (k+6)^{2}$			ft their C coords
	$=9+k^{2}+12k+36$	M1		and attempt to multiply out
	$PC^2 = k^2 + 12k + 45$	A1	2	AG CSO (must see PC^2 = at least once
(ii)	$PC > r \Rightarrow PC^{2} > 25$ $\Rightarrow k^{2} + 12k + 20 > 0$	B1	1	AG Condone $k^2 + 12k + 45 > 25$ $\Rightarrow k^2 + 12k + 20 > 0$
(iii)	(k+2)(k+10)	M1		Correct factors or correct use of formul
	k = -2, k = -10 are critical values	A1		May score M1, A1 for correct critical values seen as part of incorrect final answer with or without working.
	Use of sketch or sign diagram:			
	$-10 \qquad -2$ $+ - +$ $-10 \qquad -2$	M1		If previous A1 earned, sign diagram or sketch must be correct for M1, otherwise M1 may be earned for an attempt at the sketch or sign diagram using their critica values.
	\Rightarrow $k > -2, k < -10$	A1	4	$k \ge -2, k \le -10$ loses final A mark
	Condone $k > -2$ OR $k < -10$ for full marks but not AND instead of OR			Answer only of $k > -2$, $k > -10$ etc scores M1, A1, M0 since the critical values are evident.
	Take final line as their answer			Answer only of $k > 2$, $k < -10$ etc score M0, M0 since the critical values are not both correct.
	Total		13	

Deleted: ¶

Page 4: [1] Deleted

cway

21/05/2009 09:02:00

	X١	ICA2			
C)	Solution	Marks	Total	Comments
1	(a)	$x = -\frac{3}{2}$	B1		Seeing $-\frac{3}{2}$ OE
		$p(-1.5)=2(-1.5)^4+3(-1.5)^3-8(-1.5)^2-14(-1.5)-3$	M1		Attempting to evaluate $p(-1.5)$
		p(-1.5) = 10.125 - 10.125 - 18 + 21 - 3 = 0] so $(2x + 3)$ is a factor of $p(x)$]	A1	3	CSO Need both the arithme to show '= 0' and the
(t	o)(i)	$x^3-4x-1=0 \Rightarrow x(x^2-4)-1=0 \Rightarrow x^2-4=\frac{1}{x}$	M1		Dividing throughout by <i>x</i> OE
		$x^2 = \frac{1}{x} + 4 \implies x = \sqrt{\frac{1}{x}} + 4$ (since x>0)	A1	2	CSO
(i	i)	$x_2 = 2.1213$ $x_3 = 2.1146$ $x_4 = 2.1149$	B1 B1 B1	3	AWRT 2.121 AWRT 2.1146 CAO
		Total		8	
2	(a)	$\frac{5+x}{(1-x)(2+x)} = \frac{A}{1-x} + \frac{B}{2+x}$ $\Rightarrow 5 + x = A(2+x) + B(1-x)$	M1		Either multiplication by denominator or cover up rule attempted.
		Substitute $x = 1$; Substitute $x = -2$	m1		Either use (any) two values of to find A and B or equate coefficients to form and atter to solve $A-B=1$ and $2A+B=5$
(t	c)(i)	A = 2, $B = 1(1-x)^{-1} = 1 + (-1)(-x) + px^{2}$	A1 M1	3	<i>p</i> ≠0
		$= 1 + x + x^2 \dots$	A1	2	
(1	i)	$2^{-1} \left[1 + \frac{x}{2} \right]^{-1} = \frac{1}{2} \left[1 + (-1) \left(\frac{x}{2} \right) + \frac{(-1)(-2)}{2!} \left(\frac{x}{2} \right)^2 + \dots \right]$	M1		$[1+(-1)\left(\frac{x}{2}\right)+kx^2]$
			A1		Correct expn of $\left(1+\frac{x}{2}\right)^{-1}$
		$\frac{5+x}{(1-x)(2+x)} = 2(1-x)^{-1} + (2+x)^{-1}$	M1		Using (a) with powers '−1'. P
		$= 2(1 + x + x^{2}) + \frac{1}{2} \left(1 - \frac{x}{2} + \frac{x^{2}}{4} + \right)$	m1		Dep on prev 3Ms
		$= 2.5 + 1.75x + 2.125x^2 + \dots$	A1F	5	Ft only on wrong integer values for A and B, ie simplified $(A+1/2B)+(A-1/4B)x+(A+1/8)$ [Award equivalent marks for other valid methods.]
		Total		10	

XMCA2 (cont)						
Q	Solution	Marks	Total	Comments		
3(a)(i)		M1		Modulus graph		
	0 TT 2TT 7	A1	2	Correct shape including cusp at (π , 0). Ignore any part of graph beyond $0 \le x \le 2\pi$.		
(ii) (b)	<i>k</i> = 1	B1	1			
	3	M1		Two branch curve, genera shape correct.		
		A1	2	Min at $(\alpha, 1)$ Max at (β, γ) with α roughly halfway between 0 and π , and β roughly halfway between α and 2π and curve asymptotic to $x = 0, x = \pi$ and $x = 2\pi$.		
	Total		5			
4(a)	$\frac{dy}{dx} = \frac{(x+2)3e^{3x} - e^{3x}(1)}{(x+2)^2}$	B1 M1 A1	3	$(e^{3x})' = 3e^{3x}$ Quotient rule OE		
(b)	When $x = 0$, $\frac{dy}{dx} = \frac{6e^0 - e^0}{2^2} = \frac{5}{4}$	M1 A1F		Attempt to find dy/dx at x=		
	$A\left(0,\frac{1}{2}\right)$	B1				
	Equation of tangent at A: $y - \frac{1}{2} = \frac{5}{4}(x - 0)$	A1	4	ACF		
	Total		7			

----Page Break-----

XM	ICA2 (cont)			
Q	Solution	Marks	Total	Comments
5	$V = \pi \int_0^1 \cos(x^2) \mathrm{d}x$	M1 A1		$\int \cos(x^2) dx$ Correct limits. (Condone <i>k</i> , or missing π until the final mark)

Applying Simpson's rule to $\int_0^1 \cos(x^2) dx$			
x 0 0.25 0.5 0.75 1	B1		PI
$\begin{array}{lll} Y=y^2 & 1 & 0.9980(47) & 0.9689(12) & 0.8459(24) \\ 0.5403(02) \\ [\pi Y vals. 3.1415(9) & 3.1354(5) & 3.0439(2) & 2.6575(5) \\ 1.6974(0)] \end{array}$	B1		PI
$\frac{0.25}{3} \times \left\{ Y(0) + Y(1) + 4[Y(0.25) + Y(0.75)] + 2Y(0.5) \right\}$	M1		Use of Simpson's rule
$V = \pi \times \frac{10.8339}{12}$ So $V = 2.8416$ (to 4 d.p.)	A1	6	CAO
Total		6	

⁻⁻⁻⁻Page Break------

XMC/	A2 (cont)			
Q	Solution	Marks	Total	Comments
6(a)(i)		B2,1,0	2	B2 correct sketch-no part of curve in 2 nd ,3 rd or 4 th quadrants and 'In3' (B1 for general shape in 1 ^s quadrant, ignore other quadrants; In3 not required
(ii)	Range of f: $f(x) \ge \ln 3$	M1 A1	2	≥ln3 or >ln3 or f≥ln3 Allow <i>y</i> for f(<i>x</i>).
(b)(i)	$y = f^{-1}(x) \implies f(y) = x$ $\implies \ln(2y+3) = x$ $\implies 2y+3 = e^{x}$ $f^{-1}(x) = \frac{e^{x}-3}{2}$	M1 m1 A1	3	$x \Leftrightarrow y$ at any stage Use of $\ln m = N \Rightarrow m = e$ ACF-Accept y in place of $f^{-1}(x)$
(ii)	Domain of f ⁻¹ is: $x \ge \ln 3$	B1F	1	ft on (a)(ii) for RHS
(c)	$\frac{d}{dx}[(\ln(2x+3)] = \frac{1}{(2x+3)} \times 2$	M1 A1	2	1/(2 <i>x</i> +3)
(d)(i)	<i>P</i> , the pt of intersection of $y = f(x)$ and $y = f^{-1}(x)$, must lie on the line $y = x$; so <i>P</i> has coordinates (α , α). $f(\alpha) = \alpha$	M1; M1		OE eg f ⁻¹ (α) = α
	$\ln(2\alpha+3) = \alpha \implies 2\alpha+3 = e^{\alpha}$	A1	3	A.G. CSO

(ii)	$\frac{d}{dx} [f^{-1}(x)] = \frac{1}{2} e^{x}$ Product of gradients = $\frac{e^{x}}{2x+3}$ At $P(\alpha, \alpha)$, the product of the gradients is $\frac{e^{\alpha}}{2\alpha+3} = \frac{2\alpha+3}{2\alpha+3} = 1$	B1F B1	2	$\frac{e^{\alpha}-3}{2} = \alpha \Longrightarrow e^{\alpha} = 2\alpha + 3$ AG CSO
	Total		15	

Page BreakPage Break								
XMCA	XMCA2 (cont)							
Q	Solution	Marks	Total	Comments				
7(a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = x \mathrm{e}^x + \mathrm{e}^x .$	M1 A1		M1 Product rule OE.				
	At stationary point(s) $e^{x}(x + 1) = 0$ $e^{x} > 0$	m1 E1		OE eg accept e ^x ≠ 0				
	has exactly one st pt Stationary point is $(-1, -e^{-1})$	A1 A1	6	CSO with conclusion.				
(b)	Stationary point is $(-1, k - e^{-1})$	B1F		Or E1 for $y = x e^x$ to $y = x e^x + k$ is a vertical translation of k units.				
	St. pt is on x-axis, so $k = e^{-1}$.	B1	2					
	Total		8					
8	$\int \frac{1}{y} dy = \int \frac{\cos x}{6 + \sin x} dx$	M1		Separating variables with intention to then integrate.				
	$\ln y = \ln (6 + \sin x) (+c)$	A1 A1		A1 for each side. Condone missing '+c'				
	$\ln 2 = \ln 6 + c$ $\ln y = \ln (6 + \sin x) + \ln 2 - \ln 6$	m1		Substituting $x = 0$, $y = 2$ to find c				
	so $y = \frac{1}{3}(6 + \sin x)$	A1	5	Correct simplified form not involving logs				
	Total		5					
9(a)	$y = e^{2x} \rightarrow e^{-2x} \rightarrow 6e^{-2x}$. Reflection; in the <i>y</i> -axis Stretch, (I) parallel to <i>y</i> -axis, (II) scale factor 6.	M1;A1 M1 A1	4	M1 'Stretch' with either (I) or (II).				
				For correct alternatives to the stretch after writing $y = e^{-2x+ln6}$ award B1 for 'translation in <i>x</i> -dirn.' and B1 for the correct vector (OE) noting order of transformations.				
(b)(i)	Area of rectangle/shaded region below <i>x</i> -axis = 3 <i>k</i>	B1						

	Area of shaded region above x-axis			
	$= \int_0^k 6e^{-2x} dx$	B1		
	$= \left[-3e^{-2x} \right]_{0}^{k} = -3e^{-2k} - (-3)$	M1 A1		F(k) - F(0) following an integration. ACF
	Total area of shaded region = $3k - 3e^{-2k} + 3 = 4$ $3k - 1 - 3e^{-2k} = 0 \implies (3k - 1)e^{2k} - 3 = 0$	M1 A1	6	AG CSO
(ii)	Let $f(k) = (3k - 1)e^{2k} - 3$ $f(0.6) = 0.8e^{1.2} - 3 = -0.3(4) < 0$ $f(0.7) = 1.1e^{1.4} - 3 = 1.(46) > 0$	M1		Both f(0.6) and f(0.7) [or better] attempted
	Since change of sign (and f continuous), $0.6 < k < 0.7$	A1	2	AG Note: Must see the explicit reference to 0.6 and 0.7 otherwise A
	Total		12	

------Page Break-----

XMCA2 (cont)						
Q	Solution	Marks	Total	Comments		
10(a)	$\overrightarrow{AB} = \begin{bmatrix} 5\\1 \end{bmatrix} - \begin{bmatrix} 2\\0 \end{bmatrix} = \begin{bmatrix} 3\\1 \end{bmatrix}$	M1		M1 for $\pm (\overrightarrow{OB} - \overrightarrow{OA})$		
		A1		OE for BA		
	Line AB: $r = \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix} + \lambda \begin{bmatrix} 3 \\ 1 \\ 4 \end{bmatrix}$	B1F	3	OE Ft on \overrightarrow{AB}		
(b)	$\begin{bmatrix} 3\\1\\4 \end{bmatrix} \bullet \begin{bmatrix} 1\\2\\1 \end{bmatrix} = 3 + 2 + 4 = 9$	M1		$\pm \overrightarrow{AB} \bullet$ direction vector of <i>l</i> evaluated		
	$\sqrt{3^2 + 1^2 + 4^2} = \sqrt{26};$ $\sqrt{1^2 + 2^2 + 1^2} = \sqrt{6}$	B1F		Either; Ft on either of c's vectors		
	$\sqrt{26}\sqrt{6}\cos\theta = 9$	M1		Use of a b cos θ = a ▪ b		
	$\cos\theta = \frac{9}{\sqrt{26}\sqrt{6}} = \frac{9}{\sqrt{2}\sqrt{13}\sqrt{2}\sqrt{3}}$ $= \cos\theta = \frac{9}{2\sqrt{13}\sqrt{3}} = \frac{9}{2\sqrt{39}}$	A1	4	AG CSO		
(c)(i)	B(511)					
	A(2,0,0)					

PhysicsAndMathsTutor.com

	$\overrightarrow{BP} = \begin{bmatrix} 2+p\\2p\\p \end{bmatrix} - \begin{bmatrix} 5\\1\\4 \end{bmatrix} = \begin{bmatrix} p-3\\2p-1\\p-4 \end{bmatrix}$	M1 A1		Condone one slip
	$\overrightarrow{BP} \bullet \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} = 0; 6p = 9 \implies p = 1.5$	M1 A1		" $\pm \overrightarrow{BP} \bullet$ direction vector of $l = 0$ ". Condone one slip
	P (3.5, 3, 1.5) is mid point of BC	A1	5	
(ii)	$\frac{x_c + 5}{2} = 3.5 \frac{y_c + 1}{2} = 3 \frac{z_c + 4}{2} = 1.5$	M1		
	\Rightarrow C (2, 5, -1)	A1	2	Condone written as a column vector. Award equivalent marks for alternativ valid methods.
	Total		14	

-----Page Break------

XMCA2 (cont)

Q Solution $11(a)$ $\sin(2x + y) = \sin(2x + y)$	Marks	Total	Comments
$\frac{11}{2}$	$cx \pm coc2x cinx$ M1		
$= [2\sin x\cos x]\cos x$	$x + [1-2\sin^2 x]\sin x$ B1;B1		B1 for each []. Accept alternative correct forms for $cos2x$
$= 2\sin x (1-\sin x)$ $= 2\sin x - 2\sin^3 x$ $\sin 3x = 3\sin x - 4\sin^3 x$	$-\sin x - 2\sin^3 x$	5	CSO
(b) $2 \sin 3x = 1 - \cos 2x$ $2(3\sin x - 4\sin^3 x) = 1$ $2(3\sin x - 4\sin^3 x) = 1$	$-\cos 2x$ M1 - (1-2sin ² x) M1 A1		Using (a) Equation in sin <i>x</i>
$2\sin x (3 - \sin x - 4\sin^2)$ [$2\sin x = 0$] (3 - 4sin.	f(x) = 0 $f(x)(1 + \sin x) = 0$ m1		Factorising/solving quadratic in sir
$\sin x = 0;$ $x = 1$ $\sin x = 0.75;$ $x = 4$	80° B1 48.6°, 131.4° A1		Ignore solns outside 0°< <i>x</i> <360° throughout
$\sin x = -1$; $x = 2$	270° A1	7	
Total		12	
12(a)(i) $u = x$ and $\frac{dv}{dx} = \sec^2 x$	² x M1		Attempt to use parts formula in the 'correct direction'
$\frac{\mathrm{d}u}{\mathrm{d}x}$ = 1 and v = tan x	A1		PI
$\dots = x \tan x - \int \tan x$	A1		
$= x \tan x - \ln (s)$	ec x) (+ c) A1	4	OE CSO (Condone absence of + <i>c</i>)
(ii) $\int x \tan^2 x dx = \int x(setator) dx = \int x(se$	$ec^2 x - 1) dx$ M1		Use of identity 1 + $\tan^2 x = \sec^2 x$

	= [x tan x - ln (sec x)] $-\frac{1}{2}x^2$ (+ c)	A1F	2	[…] ft on (a)(i)
(b)	$x = 2\sin\theta$, $dx = 2\cos\theta d\theta$	M1		"d $x = f(\theta) d\theta$ " OE
	$\int \sqrt{4-x^2} \mathrm{d}x = \int \sqrt{4(1-\sin^2\theta)} 2\cos\theta \mathrm{d}\theta$	m1 A1		Eliminating all <i>x</i> 's
	= $\int 4\cos^2\theta d\theta = \int 2(\cos 2\theta + 1) d\theta$	m1		Use of $\cos 2\theta$ to integrate $\cos^2\theta$.
	$= \sin 2\theta + 2\theta (+ c)$	A1F		Ft a slip
	= $2\sin\theta\sqrt{1-\sin^2\theta}$ + 2θ (+ c)			
	= $x \sqrt{\left(1 - \frac{x^2}{4}\right)} + 2\sin^{-1}\left(\frac{x}{2}\right)$ (+ c)	A1	6	ACF (accept unsimplified)
	Total		12	

Page Break-

```
XMCA2 (cont)
```

Q	Solution	Marks	Total	Comments
13	$x = 3t + t^3 \qquad \qquad y = 8 - 3t^2$			
	$\frac{\mathrm{d}x}{\mathrm{d}t} = 3 + 3t^2 \qquad \qquad \frac{\mathrm{d}y}{\mathrm{d}t} = -6t$	M1		Both attempted and at least one correct.
	dv = -6t	M1		Chain rule.
	$\frac{dy}{dx} = \frac{dt}{3+3t^2}$	A1		
	At $P(-4, 5), t = -1$	B1		
	At P(-4, 5), $\frac{dy}{dx} = \frac{6}{3+3} = 1$			
	Gradient of normal at P is -1	M1		
	Eqn of normal at P: $y-5 = -1(x+4)$	A1		ACF
	y + x = 1			
	Normal cuts curve C when			
	$8 - 3t^2 + 3t + t^3 = 1$	M1		
	$\Rightarrow t^3 - 3t^2 + 3t + 7 = 0$	A1		
	$\Rightarrow (t+1)(t^2-4t+7) = 0$ (*)	m1		
	$(t^2 - 4t + 7) = 0$ has no real solutions			
	since $(-4)^2 < 4(1)(7)$.	M1		
	t = -1 is only real solution of (*) so			
	normal only cuts C at P, where $t = -1$	E1		
	ie the normal does not cut C again.		11	
	Total		11	

Version 1.0

General Certificate of Education June 2010

Mathematics

MPC1

Pure Core 1

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2010 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme and abbreviations used in marking

Μ	mark is for method							
m or dM	mark is dependent on one or more M marks and is for method							
А	mark is dependent on M or m marks and is for accuracy							
В	mark is independent of M or m marks and is	mark is independent of M or m marks and is for method and accuracy						
E	mark is for explanation							
\sqrt{or} ft or F	follow through from previous							
	incorrect result	MC	mis-copy					
CAO	correct answer only	MR	mis-read					
CSO	correct solution only	RA	required accuracy					
AWFW	anything which falls within	FW	further work					
AWRT	anything which rounds to	ISW	ignore subsequent work					
ACF	any correct form	FIW	from incorrect work					
AG	answer given	BOD	given benefit of doubt					
SC	special case	WR	work replaced by candidate					
OE	or equivalent	FB	formulae book					
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme					
–x EE	deduct <i>x</i> marks for each error	G	graph					
NMS	no method shown	c	candidate					
PI	possibly implied	sf	significant figure(s)					
SCA	substantially correct approach	dp	decimal place(s)					

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.
MPCI		36 -		<u>a</u>
Q	Solution	Marks	Total	Comments
1 (a)	$y = \frac{14}{3} - \frac{2}{3}x$	M1		Attempt at $y = \dots$
	Gradient $AB = -\frac{2}{3}$	A1	2	Condone error in rearranging equation
(b)(i)	y - 7 ="their grad AB" $(x - 3)$	M1		or $2x + 3y = k$ and sub $x = 3, y = 7$
				or $y = mx + c$, $m = their grad AB$ and attempt to find c using $x = 3$, $y = 7$
	$y - 7 = -\frac{2}{3}(x - 3)$ OE	A1	2	$2x+3y = 27$, $y = -\frac{2}{3}x+9$ etc
(ii)	$m_1 m_2 = -1$	M1		or <i>negative reciprocal</i> (stated or used PI)
	\Rightarrow grad $AD = \frac{3}{2}$	A1√		FT their grad AB
	$y - 7 = \frac{3}{2}(x - 3)$	A1		Any correct equation unsimplified
	$\Rightarrow 3x - 2y + 5 = 0$	A1	4	Integer coefficients; all terms on one side, condone different order or multiples. eg $0 = 4y - 6x - 10$
(c)	2x+3y=14 and $5y-x=6$ used with x or y eliminated (generous)	M1		2(5y-6)+3y=14 etc
	x = 4, y = 2	A1 A1	3	B(4,2) full marks NMS
	Total		11	
2 (a)	$(3-\sqrt{5})^2 = 9 - 6\sqrt{5} + (\sqrt{5})^2$	M1		Allow one slip in one of these terms M0 if middle term is omitted
	$=14 - 6\sqrt{5}$	A1	2	
(b)	$\frac{\left(3-\sqrt{5}\right)^2}{1+\sqrt{5}} \times \frac{1-\sqrt{5}}{1-\sqrt{5}}$	M1		or $\dots \times \frac{\sqrt{5} - 1}{\sqrt{5} - 1}$
	$14 + 6\sqrt{5}\sqrt{5} - 6\sqrt{5} - 14\sqrt{5} = 44 - 20\sqrt{5} $	m1		Expanding <i>their</i> numerator (condone one error or omission)
	(Denominator) = -4	B1		Must be seen as denominator
	$(\text{Answer}) = -11 + 5\sqrt{5}$	A1	4	Accept "answer = $5\sqrt{5} - 11$ "
	Total		6	

	Solution	Marks	Total	Comments
3(a)(i)	$p(-3) = (-3)^3 + 7(-3)^2 + 7(-3) - 15$	M1		p(-3) attempted; NOT long division
	= -27 + 63 - 21 - 15			This line alone implies M1
	$p(-3)=0 \implies (x+3 \text{ is}) \text{ factor}$	A1	2	p(-3) shown = 0 plus statement
(ii)	$p(x) = (x+3)(x^2 + px + q)$	M1	-	Full long division, comparing coefficients or by inspection either $p = 4$ or $q = -5$
	(Quadratic factor) $(x^2 + 4x - 5)$	A1		or M1 A1 for either <i>x</i> –1 or <i>x</i> +5 <i>clearly</i> found using Factor Theorem
	(p(x)=) (x+3)(x-1)(x+5)	A1	3	Must be seen as a product of 3 factors NMS full marks for correct product
				SC B2 for 3 correct factors listed NMS SC B1 for $(x + 3)(x - 1)()$ or $(x + 3)(x + 5)()$ or $(x + 3)(x + 1)(x - 5)$
(b)	$p(2) = 2^3 + 7 \times 2^2 + 7 \times 2 - 15$	M1		NOT long division; must be $p(2)$
	or $(2+3)(2-1)(2+5)$			May use "their" product of factors
	(Remainder) = 35	A1cso	2	
(c)(i)	p(-1) = -16; p(0) = -15 $\Rightarrow p(-1) < p(0)$	B1	1	Values must be evaluated correctly
(ii)				
	<i>y</i>	B1		y- intercept -15 marked or $(0,-15)$ stated
		M1		Cubic graph – 1 max, 1 min
	-5 -3 1 x	A1		\wedge shape with -5, -3, 1 marked
	////////	A1	4	Graph correct with minimum point to left of <i>y</i> -axis and going beyond both –5 and 1
	Cannot score M1A0A1 but can score			Previous A1 must be scored
	DUMIAIAI Tatal		12	
L	IUtal		14	

Q	Solution	Marks	Total	Comments
	r ⁵ 8	M1		One term correct
4(a)(i)	$\frac{x}{5} - \frac{3}{2}x^2 + 9x$	A1		Another term correct
	5 2	A1		All correct (may have $+ c$)
	$\frac{32}{5} - 16 + 18$	m1		F(2) attempted
	$=8\frac{2}{5}$	A1	5	$\frac{42}{5}$, 8.4
(ii)	Shaded area = 18 – ' <i>their integral</i> '	M1		PI by 18 – (a)(i) NMS
	$=9\frac{3}{5}$	A1	2	$\frac{48}{5}$, 9.6 NMS full marks
	dv 2	M1		One term correct
(b)(i)	$\frac{dy}{dx} = 4x^3 - 8$	A1		All correct (no $+ c$ etc)
	$x=1 \Rightarrow \frac{dy}{dx}=4-8$	m1		sub $x = 1$ into their $\frac{dy}{dx}$
	(Gradient of curve $) = -4$	Alcso	4	No ISW
(ii)	$y-2 = -4(x-1); y = -4x+c, \ c = 6$	B1√	1	any correct form ; FT <i>their</i> answer from (b)(i) but must use $x = 1$ and $y = 2$
	Total		12	

				~ ~ ~
Q	Solution	Marks	Total	Comments
5(a)	$(x+5)^{2} + (y-6)^{2} = 5^{2}$	M1		One term correct LHS
		AI D1	2	LHS all correct
		BI	3	KHS correct: condone = 25
(b)(i)	sub $x = -2$, $y = 2$ into circle equation			Circle equation must be correct
	$3^{2} + (-4)^{2} = 25$			
	\rightarrow lies on circle			
		B1	1	Must have concluding statement
	G 1 D G 4	D1		4
(11)	Grad $PC = -\frac{1}{3}$	BI		Condone -3
	Normal to circle has equation			
	y - 6 = 'their gradient PC'(x+5)	M1		M0 if tangent attempted or incorrect
	or $v-2 = 'their gradient PC'(x+2)$			coordinates used
	4			
	$y-6 = -\frac{7}{3}(x+5)$			Any correct form eg $4x + 3y + 2 = 0$
	4	A1cso	3	$y = -\frac{4}{7}x + c$ $c = -\frac{2}{7}$
	or $y-2 = -\frac{1}{3}(x+2)$			3 3 3
				Alternative 1
	1			
(iii)	$PM = \frac{1}{2} \times \text{radius}$	M1		Attempt at $M\left(-\frac{7}{2},4\right)$ with at least one
				correct coordinate and PM^2 attempted
	= 2.5	Alcso		$PM^2 = \frac{9}{2} + 4 = \frac{25}{2}$
		DI		4 4
	$PO = \sqrt{8}$	BI	4	$PO^{2} = 4 + 4 = 8$
	F is closer to the point M	Elcso	4	Statement following correct values
				Alternative 2
				Attempt at $M\left(-\frac{7}{4}, 4\right)$ with at least one
		(M1)		
				correct coordinate and attempt at vectors
				or difference of coordinates
		(Alcso		$\overrightarrow{PM} = \begin{bmatrix} -1.5 \\ 2 \end{bmatrix}$ OE
				$\begin{pmatrix} 2 \end{pmatrix}$ <i>P</i> is closer to the point <i>M</i>
		(EICSO)		T is closer to the point M
		(E1)	(4)	considered – totally independent of M1
	Total		11	considered – <i>totutty independent</i> of W11

7

Q	Solution	Marks	Total	Comments
6(a)(i)	S.A. = $4xy + 5xy + 3xy + 6x^2 + 6x^2$ OE	M1		Condone one slip or omission
	$=12xy+12x^2$	A1		
	$144 = 12xy + 12x^2$			Must see this line
	$\Rightarrow xy + x^2 = 12$	Alcso	3	AG
(ii)	(Volume =) $\frac{1}{2} \times 3x \times 4x \times y$ OE	M1		
	$= 6x^2 \times \frac{(12 - x^2)}{x^2}$			Must see $(y =) \frac{(12 - x^2)}{x}$ or $xy = 12 - x^2$
	x			for A1
	$(V=)72x-6x^3$	A1	2	AG must be convinced not working back from answer
(b)(i)	$\frac{dV}{dt} = 72 - 18x^2$	M1	2	One term correct All correct $(n_0 + c_0 etc)$
	dx		2	
(ii)	$x = 2 \Longrightarrow \frac{\mathrm{d}V}{\mathrm{d}x} = 72 - 18 \times 2^2$	M1		Substitute $x=2$ into their $\frac{dV}{dx}$
	$\Rightarrow \frac{dV}{dt} = 72 - 72 = 0$			
	dx \Rightarrow stationary (value when $x = 2$)	A1	2	Shown = 0 plus statement
				Statement may appear first
(c)	$\frac{\mathrm{d}^2 V}{\mathrm{d}x^2} = -36x$	B1√		FT their $\frac{dV}{dr}$
	$\frac{d^2V}{dx^2} = -72 \text{ or when } x = 2 \Rightarrow \frac{d^2V}{dx^2} < 0$			
	⇒maximum	E1√	2	FT their $\frac{d^2V}{dr^2}$ value when $x = 2$
				with appropriate conclusion
	Total		11	

MPC1 ((cont)
--------	--------

Q	Solution	Marks	Total	Comments
7(a)(i)	$2(x-5)^2$	B1		<i>p</i> = 5
	+ 3	B1	2	<i>q</i> = 3
(ii)	Stating both $(x-5)^2 \ge 0$ and $3 > 0$ $\Rightarrow 2x^2 - 20x + 53 \ge 0$ or $2(x-5)^2 + 3 \ge 0$	M1		FT their $p \& q$, but must have $q > 0$
	$\Rightarrow 2x^2 - 20x + 53 = 0$ has no real roots	A1cso	2	Must have statement and correct $p \& q$.
(b)(i)	$b^{2} - 4ac = (k+1)^{2} - 4k(2k-1)$	M1		Condone one slip (including x is one slip)
	$= -7k^2 + 6k + 1$	A1		Condone recovery from missing brackets
	real roots $\Rightarrow b^2 - 4ac \ge 0$			Their discriminant ≥ 0 (in terms of k)
	$-7k^2 + 6k + 1 \ge 0$	B1√		Need not be simplified & may earn earlier
	$\Rightarrow 7k^2 - 6k - 1 \le 0$	A1cso	4	AG (must see sign change)
		111000		
(ii)	(7k+1)(k-1)	M1		Correct factors or correct use of formula
	Critical values $k = 1, -\frac{1}{7}$	A1		May score M1, A1 for correct critical values seen as part of incorrect final answer with or without working.
	Use of sign diagram or sketch $-$	M1		If previous A1 earned, sign diagram or sketch must be correct for M1
	$-\frac{1}{7} \bigcirc 1 \bigcirc 1$			Otherwise M1 may be earned for an attempt at the sketch or sign diagram using <i>their</i> critical values.
	$-\frac{1}{7} \leqslant k \leqslant 1$	A1	4	$\left(-\frac{1}{7} < k < 1\right), \left(k \ge -\frac{1}{7} \text{ OR } k \le 1\right),$
	Full marks for correct answer NMS			$\left(k \ge -\frac{1}{7}, k \le 1\right)$ score M1A1M1A0
	Condone $-\frac{2}{14}$ throughout			Answer only of $k < -\frac{1}{7}$, $k < 1$ etc
	Condone $k \ge -\frac{1}{7}$ AND $k \le 1$ for full			scores M1, A1, M0 since the critical values are evident.
	, marks			Answer only of $\frac{1}{7} \leq k \leq 1$ etc
	Take their final line as their answer.			scores M0, M0 since the critical values are not both correct.
	Total		12	
	TOTAL		75	

Version1.0

General Certificate of Education (A-level) January 2011

Mathematics

MPC1

(Specification 6360)

Pure Core 1

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2011 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX.

Μ	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
А	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
\checkmark or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
–x EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

Key to mark scheme abbreviations

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

Mark Scheme – General Certificate of Education (A-level) Mathematics – Pure Core 1 – Ja	anuary 2011
---	-------------

MPC1	MPC1						
Q	Solution	Marks	Total	Comments			
1(a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 18 + 6x - 12x^2$	M1 A1 A1	3	one of these terms correct another term correct all correct (no $+ c$ etc) (penalise $+ c$ once only in question)			
(b)	$18 + 6x - 12x^2 = 0$	M1		putting their $\frac{dy}{dx} = 0$, PI by attempt to solve or factorise			
	6 $(3-2x)(x+1)$ (= 0)	m1		attempt at factors of their quadratic or use of quadratic equation formula			
	$x = -1, \ x = \frac{3}{2}$ OE	A1	3	must see both values unless $x = -1$ is verified separately			
				If M1 not scored, award SC B1 for			
				verifying that $x = -1$ leads to $\frac{dy}{dx} = 0$ and			
				a further SC B2 for finding $x = \frac{3}{2}$ as other			
				value			
(c)(i)	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 6 - 24x$	B1√		FT their $\frac{dy}{dx}$ but $\frac{d^2y}{dx^2}$ must be correct if 3			
	When $x = -1$, $\frac{d^2 y}{dx^2} = 6 - (24 \times -1)$	M1		Sub $x = -1$ into 'their' $\frac{d^2 y}{dx^2}$			
	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 30$	A1cso	3				
(ii)	Minimum point	E1√	1	must have a value in (c)(i)			
				FT "maximum" if their value of $\frac{d^2 y}{dx^2} < 0$			
	Total		10				

Mark Scheme – General Certificate of Education (A-level) Mathematics – Pure Core 1 – January 2011

MPC1 (cont	(cont)						
Q	Solution	Marks	Total	Comments			
2(a)	27	B1	1				
(b)	$\frac{4\sqrt{3} + 3\sqrt{7}}{3\sqrt{3} + \sqrt{7}} \times \frac{3\sqrt{3} - \sqrt{7}}{3\sqrt{3} - \sqrt{7}}$	M1					
	(Numerator =) $36 + 9\sqrt{21} - 4\sqrt{21} - 21$	m1		expanding numerator condone one slip or omission			
	(Denominator =) 20 $\frac{15+5\sqrt{21}}{2}$	B1		must be seen as denominator			
	$=\frac{3+\sqrt{21}}{4}$	A1cso	4	$m = 3, n = 4$ condone $\frac{3}{4} + \frac{\sqrt{21}}{4}$			
	Total		5				
3(a)(i)	$y = \frac{1}{2} \left(7 - 3x \right)$	M1		attempt at $y =$ or use of 2 correct points using $\frac{\Delta y}{\Delta x}$			
	\Rightarrow gradient = $-\frac{3}{2}$	A1	2	condone slip in rearranging if gradient is correct			
(ii)	y = 'their grad' $x + c$ and substitution of $x = 2$, $y = -7$	M1		or using $3x + 2y = k$ with $x = 2$, $y = -7$ and attempt to find k or $y7 =$ 'their grad' $(x - 2)$			
	$y = -\frac{3}{2}x + c, c = -4$	A1		correct equation in any form $y+7 = -\frac{3}{2}(x-2)$, $3x + 2y + 8 = 0$, etc			
	$(x=0 \Rightarrow) y=-4$	A1cso	3	or y-intercept = -4 or $D(0, -4)$			
(b)	$3x+2(1-4x)=7$, $y=1-\frac{4}{3}(7-2y)$	M1		elimination of y (or x) (condone one slip)			
	x = -1 $y = 5$	A1 A1	3	one coordinate correct other coordinate correct coordinates of $A(-1, 5)$			
(c)	$(5-2)^2 + (k+7)^2 = 5^2$ (or $k+7=4$ or $k+7=-4$)	M1		condone one sign slip within one bracket			
	k = -3	A1		one correct value of k			
	or $k = -11$	A1	3	both correct (and no other values)			
	Total		11				

Mark Scheme - General Certificate of Education	(A-level) Mathematics - Pure Core 1	– January 2011
--	-------------------------------------	----------------

MPC1 (cont	MPC1 (cont)					
Q	Solution	Marks	Total	Comments		
4(a)(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = -1 - 4x^3$	M1 A1		one of these terms correct all correct $(no + c)$		
	(When $x = 1$, grad =) -5	A1cso	3	(Check that $\frac{dy}{dx}$ is actually correct!)		
(ii)	y-12 = 'their grad' $(x-1)$	M1		any form of equation through (1, 12) and attempt at <i>c</i> if using $y = mx + c$		
	y = -5x + 17 (or $y = 17 - 5x$)	A1√	2	FT their gradient Condone $y = -5x + c$, $c = 17$ etc		
(b)(i)	$14x - \frac{x^2}{2} - \frac{x^5}{5}$	M1 A1 A1		one of these terms correct another term correct all correct (may have $+ c$)		
	$\left(14 - \frac{1}{2} - \frac{1}{5}\right) - \left(-28 - 2 + \frac{32}{5}\right)$	m1		F(1) and F(-2) attempted		
	= 36.9 OE	A1	5	Condone recovery to this value		
(ii)	Area $\Delta = \frac{1}{2} \times 3 \times 12$ = 18	M1		Correct area of triangle unsimplified		
	\Rightarrow shaded area = 18.9	A1cso	2			
	Total		12			

MPC1 (cont)					
Q	Solution	Marks	Total	Comments	
5(a)(i)	<i>y</i> *	M1		cubic curve with one max and one min (either way up)	
		A1		curve touching positive <i>x</i> -axis (either way up)	
		A1	3	correct graph passing through <i>O</i> and touching <i>x</i> -axis at 2	
(ii)	$x\left(x^2 - 4x + 4\right) = 3$				
	$\Rightarrow x^3 - 4x^2 + 4x - 3 = 0$	B1	1	AG (must have $= 0$)	
(b)(i)	$p(-1) = (-1)^{3} - 4(-1)^{2} + 4(-1) - 3$	M1		p(-1) attempted (condone one slip)	
	(=-1-4-4-3)			or full long division to remainder	
	= - 12	A1	2	must indicate remainder $= -12$ if long division used	
(ii)	$p(3) = 3^3 - 4 \times 3^2 + 4 \times 3 - 3$	M1		p(3) attempted (condone one slip) NOT long division	
	p(3) = 27 - 36 + 12 - 3				
	$p(3) = 0 \Longrightarrow x - 3$ is factor	A1	2	shown = 0 plus statement	
(iii)	Either $b = -1$ (coefficient of <i>x</i> correct) or $c = 1$ (constant term correct)	M1		allow M1 for full attempt at long division or comparing coefficients if neither <i>b</i> nor <i>c</i> is correct	
	$p(x) = (x-3)(x^2 - x + 1)$	A1	2		
(c)	Discriminant of 'their quadratic' = $(-1)^2 - 4$	M1		numerical expression must be seen	
	Discriminant = -3 (or < 0) \Rightarrow no real roots	A1cso		must have correct quadratic and statement and all working correct	
	(Only real root is $x =$) 3	B1	3		
	Total		13		
		•			

Mark Scheme – General Certificate of Educati	on (A-level) Mathematics	– Pure Core 1	– January 201
--	--------------------------	---------------	---------------

MPC1 (cont)					
Q	Solution	Marks	Total	Comments	
6(a)(i)	$(x+3)^2 + (y-1)^2$	B1		condone $(x3)^2$	
	= 13	B1	2	condone $\left(\sqrt{13}\right)^2$	
(ii)	$x^{2} + 6x + 9 + y^{2} - 2y + 1$	M1		attempt to multiply out both of 'their' brackets; must have x and y terms	
	x + y + 6x - 2y	AI	2	both $m = 6$ and $n = -2$	
	-3 = 0	AI	3	All correct, $p = -3$ and $\dots = 0$	
(b)	$x = 0 \implies y^2 - 2y - 3 = 0$ $\implies (y - 3)(y + 1) = 0$ y = 3, y = -1	M1 A1		putting $x = 0$ PI and attempt to solve or factorise	
	\Rightarrow Distance $AB = 3 + 1 = 4$	Alcso	3	OR Pythagoras $d^2 = 13 - 3^2$ M1	
				$d = 2 \qquad A1$ distance = 2×2 = 4 A1	
(c)(i)	$(-5+3)^{2} + (-2-1)^{2} = 4+9$ = 13			Substitution $x = -5$, $y = -2$ into any correct circle equation	
	$\Rightarrow D$ lies on circle	B1	1	convincing verification plus statement	
(ii)	$\operatorname{grad} CD = \frac{1+2}{-3+5}$	M1		condone one sign slip	
	$=\frac{3}{2}$ (or 1.5)	A1	2	not $\frac{-3}{-2}$	
(iii)	Perpendicular gradient $=-\frac{2}{3}$	M1		ft their grad <i>CD</i> or $m_1m_2 = -1$ stated	
	Tangent has equation $y+2 = -\frac{2}{3}(x+5)$	A1	2	any form of correct equation eg $2x + 3y + 16 = 0$ $y = -\frac{2}{2}x + c, c = -\frac{16}{2}$	
				3 3	
	Total		13		

MPC1 (cont)					
Q	Solution	Marks	Total	Comments	
7(a)(i)	$(-) (x+5)^2$	M1		$q = 5$; condone $(-x-5)^2$	
	$29 - (x+5)^2$	A1	2	p = 29 and q = 5	
(ii)	x = -5 is line of symmetry	B 1√	1	FT $x = -$ 'their q' or correct	
(b)(i)	$4 - 10x - x^2 = k(4x - 13)$				
	$\Rightarrow x^2 + 4kx + 10x - 13k - 4 = 0$			Must see both these lines OE	
	$\Rightarrow x^2 + 2(2k+5)x - (13k+4) = 0$	B1	1	AG all correct working and $= 0$	
(ii)	2 distinct roots $\Rightarrow b^2 - 4ac > 0$	B1		stated or used (must be > 0)	
	Discriminant = $4(2k+5)^2 + 4(13k+4)$	M1		condone one slip (may be within formula)	
	$4(4k^2 + 20k + 25 + 13k + 4) > 0$			or $16k^2 + 132k + 116 > 0$	
	$\Rightarrow 4k^2 + 33k + 29 > 0$	A1	3	AG > 0 must appear before final line	
(iii)	(4k+29)(k+1)	M1		correct factors or correct unsimplified quadratic equation formula $\frac{-33 \pm \sqrt{33^2 - 4 \times 4 \times 29}}{8}$	
	$k = -\frac{29}{4}, \ k = -1$	A1		condone $k = -\frac{58}{9}$, -7.25 etc but not left	
				with square roots etc as above	
$-\frac{29}{4}$	-1 0 x	M1		sketch or sign diagram including values $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	
	$k < -\frac{29}{4}, k > -1$	A1	4	condone use of OR but not AND	
	Take their final line as their answer				
	Total		11		
	TOTAL		75		

Version 1.0

General Certificate of Education (A-level) June 2011

Mathematics

MPC1

(Specification 6360)

Pure Core 1

Final

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2011 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX.

Key to mark scheme abbreviations

Μ	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
А	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
\checkmark or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
-x EE	deduct <i>x</i> marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

MPC1				
Q	Solution	Marks	Total	Comments
1 (a)	$y = \frac{13}{3} - \frac{7}{3}x$	M1		attempt at $y = a + bx$ or $\frac{\Delta y}{\Delta x}$ with 2 correct points
	(gradient =) $-\frac{7}{3}$	A1	2	condone slip in rearranging if gradient is correct
(b)(i)	y - 3 = 'their grad' $(x - 1)$	M1		or $7x + 3y = k$ and attempt at k using x = -1 and $y = 3or y = (\text{their } m)x + c and attempt at cusing x = -1 and y = 3$
	$y-3 = -\frac{7}{3}(x+1)$ or $7x + 3y = 2$ or $y = -\frac{7}{3}x + c$, $c = \frac{2}{3}$	Alcso	2	correct equation in any form and replacing with + sign
(ii)	(4,-5)	B1,B1	2	x = 4, $y = -5withhold if clearly from incorrect working$
(c)	7x + 3y = 13 and $3x + 2y = 12\Rightarrow equation in x or y only$	M1		must use correct pair of equations and attempt to eliminate y (or x)
	$\begin{array}{l} x = -2 \\ y = 9 \end{array}$	A1 A1	3	
	Total		9	

MPC1 (cont			-	a
Q	Solution	Marks	Total	Comments
2(a)(i)	$\sqrt{48} = 4\sqrt{3}$	B1	1	condone $k = 4$ stated
(ii)	$\frac{4\sqrt{3}+6\sqrt{3}}{2\sqrt{3}}$	M1		attempt to write each term in form $k\sqrt{3}$ with at least 2 terms correctly obtained
		A1		correct unsimplified in terms of $\sqrt{3}$ only
	= 5	A1cso	3	must simplify fraction to 5
				Alternative 1 $\times \frac{\sqrt{12}}{\sqrt{12}} \left(or \times \frac{\sqrt{3}}{\sqrt{3}} \right)$ M1
				correct with integer terms = $\frac{24+36}{12}$ A1 = 5 A1cso
				Alternative 2 $\frac{\sqrt{48} + \sqrt{108}}{\sqrt{12}}$ M1
				$=\sqrt{4} + \sqrt{9} \qquad A1$ $= 5 \qquad A1cso$
				Alternative 3 $\sqrt{\frac{48}{12}} + 2\sqrt{\frac{27}{12}}$ M1
				$= 2 + 2\sqrt{\frac{9}{4}} \qquad A1$
				= 5 A1cso
				if hybrid of methods used, award M1 and most appropriate first A1
				NMS (answer =) 5 scores full marks
(b)	$\frac{1 - 5\sqrt{5}}{3 + \sqrt{5}} \times \frac{3 - \sqrt{5}}{3 - \sqrt{5}}$	M1		
	(numerator =) $3 - \sqrt{5} - 15\sqrt{5} + 25$	m1		correct unsimplified but must write $5\sqrt{5}\sqrt{5} = 25$ PI by 28 seen later
	(denominator = 9 - 5 =) 4 giving $\frac{28 - 16\sqrt{5}}{4}$	B1		must be seen as denominator
	(answer =) $7 - 4\sqrt{5}$	A1	4	m=7 , $n=-4$
	Total		8	

MPC1 (cont	MPC1 (cont)					
Q	Solution	Marks	Total	Comments		
3 (a)	$\left(\frac{\mathrm{d}V}{\mathrm{d}t}\right) = \frac{3t^2}{4} - 3$	M1 A1	2	one of these terms correct all correct (no $+ c$ etc)		
(b)(i)	$t = 1 \implies \frac{\mathrm{d}V}{\mathrm{d}t} = \frac{3}{4} - 3$ $= -2\frac{1}{4}$	M1 A1cso	2	substituting $t = 1$ into their $\frac{dV}{dt}$ (-2.25 OE) <i>BUT</i> must have $\frac{dV}{dt}$ correct		
(ii)	Volume is decreasing when $t = 1$ because $\frac{dV}{dt} < 0$	E1√	1	must have used $\frac{dV}{dt}$ in (b)(i) or starts again must state that $\frac{dV}{dt} < 0$ (or $-2\frac{1}{4} < 0$ etc) ft increasing plus explanation if their $\frac{dV}{dt} > 0$		
(c)(i)	$\left(\frac{\mathrm{d}V}{\mathrm{d}t}=0\Longrightarrow\right)\frac{3t^2}{4}-3=0$	M1		PI by "correct" equation being solved		
	$\Rightarrow t^2 = 4$	A1√		obtaining $t^n = k$ correctly from their $\frac{dV}{dt}$		
	<i>t</i> = 2	Alcso	3	withhold if answer left as $t = \pm 2$		
(ii)	$\left(\frac{\mathrm{d}^2 V}{\mathrm{d}t^2}\right) = \frac{3t}{2}$ When $t = 2$, $\frac{\mathrm{d}^2 V}{\mathrm{d}^2 V} = 2$ or $\frac{\mathrm{d}^2 V}{\mathrm{d}^2 V} > 0$	B1√		(condone unsimplified) ft their $\frac{dV}{dt}$		
	when $t = 2$, $\frac{dt^2}{dt^2} = 5$ or $\frac{dt^2}{dt^2} > 0$	INI I		It then $\frac{1}{dt^2}$ and value of t from (C)(1)		
	⇒ minimum Total	Alcso	3			
	l otal		11			

MPC1 (cont				
Q	Solution	Marks	Total	Comments
4 (a)	$(x+2.5)^2$	B1		$p = \frac{5}{2}$
	$q = 7 - $ 'their' p^2	M1		unsimplified attempt at $q = 7 - $ 'their' p^2
				$q = 7 - \frac{25}{4} = \frac{3}{4}$
	$(x+2.5)^2+0.75$	A1	3	
	mark their final line as their answer			
				~
(b)(i)	x = - 'their' p or $y =$ 'their' q	M1		or $x = -\frac{5}{2}$ cao found using calculus
	$\left(-\frac{5}{2}, \frac{3}{4}\right)$	A1cao	2	condone correct coordinates stated $x = -2.5$, $y = 0.75$
(ii)	$x = -\frac{5}{2}$	B1√	1	correct or ft " $x = -$ 'their' p "
(iii)		B1		y intercept = 7 stated or seen in table as $y = 7$ when $x = 0$ or 7 marked as intercept on y-axis (any graph)
		M1		\cup shape
		A1	3	vertex above <i>x</i> -axis in correct quadrant and parabola extending beyond <i>y</i> -axis into first quadrant
(c)	Translation	E1		and no other transformation
	through $\begin{bmatrix} -\frac{5}{2} \\ \frac{3}{4} \end{bmatrix}$	M1		ft either 'their' $-p$ or 'their' q or one component correct for M1
		Alcao	3	both components correct for A1; may describe in words or use a vector
	Total		12	

MPC1 (cont)			
Q	Solution	Marks	Total	Comments
5(a)	$p(3) = 3^{3} - 2 \times 3^{2} + 3 (= 27 - 18 + 3)$ = 12	M1 A1	2	p(3) attempted; not long division
(b)	$p(-1) = (-1)^3 - 2(-1)^2 + 3$	M1	2	p(-1) attempted; not long division
	$p(-1) = -1 - 2 + 3 = 0 \implies x + 1$ is a factor	A1cso	2	correctly shown = 0 plus statement
	$\mathbf{P}(\mathbf{r}) = \mathbf{P}(\mathbf{r}) + \mathbf{P}(\mathbf{r})$		2	
(c)(i)	Quadratic factor $(x - 3x + 3)$	MI		b = -3 or $c = 3$ by inspection
				or comparing coefficients
	$(p(x)=) (x+1)(x^2-3x+3)$	A1	2	must see correct product
(ii)	Discriminant of quadratic l^2 A $(2)^2$ A $(2)^2$	M1		'their' discriminant considered possibly
	$b^2 - 4ac = (-3)^2 - 4 \times 3$			within quadratic equation formula
	$b^2 - 4ac < 0 \Rightarrow$ no real roots from quadratic	Alcso	2	
	\Rightarrow only one real root	111050	2	
	Total		8	
6(a)	$\int_{1}^{1} (x^3 - 2x^2 + 3) dx$			
		M1		one term correct
	$=\left \frac{x^{4}}{4}-\frac{2x^{3}}{3}+3x\right ^{2}$	A1		another term correct
		A1		all correct (condone $+ c$)
	$= \left(\frac{1}{4} - \frac{2}{3} + 3\right) - \left(\frac{1}{4} + \frac{2}{3} - 3\right)$	B 1√		'their' $F(1) - F(-1)$ with $(-1)^3$ etc evaluated correctly but must have earned M1
	$=4\frac{2}{2}$	Alcso	5	$\frac{14}{2}$, $\frac{56}{12}$ etc
	3			but combined as single fraction
(b)	Area of $\Delta \left(= \frac{1}{2} \times 2 \times 2 \right)$			
	$\begin{pmatrix} 2 \\ = 2 \end{pmatrix}$	B1		PI
	Shaded region has area $4\frac{2}{3} - 2$	M1		\pm their (a) \pm their Δ area
	$=2\frac{2}{3}$	Alcso	3	$\frac{8}{3}$, $\frac{32}{12}$ etc
			C	but combined as single fraction
	Total		8	

MPC1 (cont)			
Q	Solution	Marks	Total	Comments
7(a)	$8-6x > 5-4x-8$ $11 > 2x$ $x < 5\frac{1}{2} \qquad \left(or \ x < \frac{11}{2} \right)$	M1 A1cso	2	multiplying out correctly and $>$ sign used accept 5.5 $> x$ OE
(b)	$2x^{2} + 5x - 12 \ge 0$ $(x+4)(2x-3)$	M1		correct factors
	Critical values are -4 and $\frac{3}{2}$	A1		(or roots unsimplified) $\frac{-5 \pm \sqrt{121}}{4}$ both CVs correct; condone $\frac{6}{4}$, $-\frac{16}{4}$ etc here but must be single fractions
	-4 y x x	M1		sketch or sign diagram including values $ \begin{array}{ccccccccccccccccccccccccccccccccccc$
	$x \leqslant -4$, $x \geqslant \frac{3}{2}$ take their final line as their answer	A1	4	fractions must be simplified condone use of OR but not AND
	Total		U	

MPC1 (cont	t)			
Q	Solution	Marks	Total	Comments
8 (a)	$(x-3)^2 + (y+8)^2$	B1		accept $(y8)^2$
	= 100	B1	2	condone RHS = 10^2 or $k = 10^2$
(b)	$y = 0 \Rightarrow$ 'their' $(x - a)^2 + b^2 = k$ $(x - 3)^2 = 36$ or $x^2 - 6x - 27$ (= 0) (PI)	M1 A1		Alternative d 8 10
	$\Rightarrow x = -3, 9$	A1	3	$(d^2 =) 10^2 - 8^2$ M1 $d^2 = 36$ A1 or $d = 6$ $\Rightarrow x = -3, 9$ A1
(c)	Line CA has gradient $-\frac{2}{5}$	M1		
	CA has equation $(y+8) = -\frac{2}{5}(x-3)$	A1		any form of correct equation eg $y = -\frac{2}{5}x + c$, $c = -\frac{34}{5}$
	2x + 5y + 34 = 0	A1cso	3	integer coefficients - all terms on 1 side
(d)(i)	their $(x-3)^2 + (2x+1+8)^2$ or $x^2 + (2x+1)^2 - 6x + 16(2x+1)$ (+73) $x^2 - 6x + 9 + 4x^2 + 36x + 81 = 100$	M1		substituting $y = 2x + 1$ correctly into LHS of "their" circle equation and attempt to expand in terms of <i>x</i> only
	$a^{2} + 6x + 9 + 4x^{2} + 30x + 31 = 100$ or $x^{2} + 4x^{2} + 4x + 1 - 6x + 32x + 16 + 73 = 100$	A1		any correct equation (with brackets expanded)
	$\Rightarrow 5x^2 + 30x - 10 = 0$			must see this line or equivalent
	$\Rightarrow x^2 + 6x - 2 = 0$	Alcso	3	AG; all algebra must be correct
(ii)	$(x+3)^2 = 11$	M1		or correct use of formula must get as far as $x = \frac{-6 \pm \sqrt{44}}{2}$
	$x = -3 \pm \sqrt{11}$	Alcso	2	exactly this
	Total		13	
	TOTAL		75	

Version 1.0

General Certificate of Education (A-level) January 2012

Mathematics

MPC1

(Specification 6360)

Pure Core 1

Final

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aga.org.uk

Copyright © 2012 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX.

Key to mark scheme abbreviations

Μ	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
А	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
\checkmark or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
-x EE	deduct <i>x</i> marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

MPC1					
Q	Solution	Marks	Total	Comments	
1(a)	$(OA^2 =) 6^2 + (-4)^2 ; (OB^2 =) (-2)^2 + 7^2$	M1		either correct PI by 52 or 53 seen	
	$(OA^2 =) 52$ and $(OB^2 =) 53$	A 1		both correct values 52 or $\sqrt{52}$	
	or $(OA =)\sqrt{52}$ and $(OB =)\sqrt{53}$	AI		and 53 or $\sqrt{53}$ seen	
	$OA = \sqrt{52}$ and $OB = \sqrt{53}$			or $OA^2 = 52$ and $OB^2 = 53$	
	$\Rightarrow OA < OB$	A1	3	correct working + concluding statement involving <i>OA</i> and/or <i>OB</i>	
(b)(i)	grad $AB = \frac{7+4}{-2-6}$	M1		condone one sign error	
	$=-\frac{11}{8}$	A1	2		
(ii)	y4 = 'their grad AB'(x - 6) or $y - 7 = \text{'their grad } AB'(x2)$	M1		or $y =$ 'their grad AB ' $x + c$ and attempt to find c using x = 6, $y = -4$ or $x = -2$, $y = 7$	
	$y + 4 = -\frac{11}{8}(x-6)$ OE	A1		any correct form $eg y = -\frac{11}{8}x + \frac{34}{8}$ but must simplify $$ to $+$	
	$\Rightarrow 11x + 8y = 34$	A1	3	condone $8y + 11x = 34$ or any multiple of these equations	
(c)	$(\text{grad } AC =) \frac{8}{11}$	B1√		FT -1 / 'their grad <i>AB</i> '	
	$\frac{4}{k-6} = 'their \frac{8}{11}' \text{ OE}$ $\Rightarrow 2k-12=11$	M1		equating gradients; LHS must be correct and RHS is "attempt" at perp grad to <i>AB</i>	
	$\Rightarrow k = \frac{23}{2}$	A1cso	3	<i>k</i> = 11.5 OE	
	Total		11		
(c) Alterna	(c) Alternative: Eqn AC : $(y+4) = 'their \frac{8}{11}'(x-6) = B1\sqrt{(11y-8x-92)}$ AND must sub $y=0$ for M1 or $(y-0) = 'their \frac{8}{11}'(x-k) = B1\sqrt{AND}$ must sub $x=6$, $y=-4$ for M1				

Q	Solution	Marks	Total	Comments
2(a)	(x-6)(x+2)	B1	1	ISW for $x = 6$, $x = -2$ etc
(b)	$\begin{array}{c c} y \\ \hline \\ -2 \\ \hline \\ -12 \\ \hline \\ x = -2 \end{array}$	B1√		correct <i>x</i> values <i>or</i> FT 'their' factors
	x = 6			(x-intercepts stated or marked on sketch) may be seen in (a)
	<i>y</i> = -12	B1		(stated or -12 marked on sketch)
	\cup – shaped curve	M1		approximately
	"correct" shape in all 4 quadrants with minimum to right of y-axis	A1	4	
(c)(i)	$(x-2)^2$	M1		<i>p</i> = 2
	$(x-2)^2 - 16$	A1	2	p=2 and $q=16$
(ii)	(Minimum value is) -16	B1√	1	FT ' their $-q$ '
(d)	Replacing each x by $x + 3$ OR adding 2 to their quadratic $y = \left[(x+3)^2 - 4(x+3) - 12 \right] + 2$	M1		in original equation or 'their' completed square or factorised form or replacing y by $y - 2$
	or $y = (x+3)^2 - 14$ or $y = x^2 + 2x - 13$ or $y - 2 = (x-3)(x+5)$	A1	2	OE any correct equation in x and y unsimplified
	Total		10	

MPC1 (cont)	-		
Q	Solution	Marks	Total	Comments
3(a)(i)	$\left(3\sqrt{2}\right)^2 = 18$	B1	1	
(ii)	$(3\sqrt{2}-1)^2 = 'their 18' - 3\sqrt{2} - 3\sqrt{2} + 1$	M1		FT their $(3\sqrt{2})^2$
	$=18-3\sqrt{2}-3\sqrt{2}+1$	A1		$(=19-6\sqrt{2})$
	$(3+\sqrt{2})^2 = 9+3\sqrt{2}+3\sqrt{2}+2$	B1		$\left(=11+6\sqrt{2}\right)$
	\Rightarrow Sum = 30	A1cso	4	
(b)	$\frac{4\sqrt{5} - 7\sqrt{2}}{2\sqrt{5} + \sqrt{2}} \times \frac{2\sqrt{5} - \sqrt{2}}{2\sqrt{5} - \sqrt{2}}$	M1		
	Numerator = 8 $(\sqrt{5})^2 - 4\sqrt{5}\sqrt{2} - 14\sqrt{5}\sqrt{2} + 7(\sqrt{2})^2$	m1		correct unsimplified $(=54-18\sqrt{10})$
	Denominator = $(2\sqrt{5})^2 - (\sqrt{2})^2$ = 18	B1		must be seen as denominator
	\Rightarrow Answer = 3 - $\sqrt{10}$	Alcso	4	
	Total		9	

	MPC1	(cont)
--	------	--------

Q	Solution	Marks	Total	Comments
4(a)(i)	$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) = \int 5x^4 - 6x + 1$	M1 A1		one term correct another term correct
		A1	3	all correct (no $+ c$ etc)
(ii)	$\left(\frac{\mathrm{d}^2 y}{\mathrm{d}x^2}\right) = 20x^3 - 6$	B1√	1	FT 'their' $\frac{dy}{dx}$
(b)	$x = -1 \Rightarrow \frac{dy}{dx} = 5(-1)^4 - 6(-1) + 1 (=12)$	M1		must sub $x = -1$ into 'their' $\frac{dy}{dx}$
	$\Rightarrow y = 12(x+1)$	A1cso	2	any correct form with $(x1)$ simplified condone $y = 12x + c$, $c = 12$
(c)	$x = 1 \implies \frac{\mathrm{d}y}{\mathrm{d}x} = 5 - 6 + 1$	M1		sub $x = 1$ into their $\frac{dy}{dx}$
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 0 \implies \text{stationary point}$	A1cso		shown $= 0$ plus correct statement
	when $x = 1$, $\frac{d^2 y}{dx^2} = 14$			or $\frac{d^2 y}{dx^2} = 20 - 6 > 0$
	\Rightarrow (<i>B</i> is a) minimum (point)	E1	3	$\Rightarrow (B \text{ is a) minimum (point)}$
				must have correct $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ for E1
(1)(1)	$\frac{x^6}{x^6} - \frac{3x^3}{x^3} + \frac{x^2}{x^2} + 5x$	M1 A1		one term correct
(u)(i)	6 3 2	A1		all correct (may have $+c$)
	$\left[\frac{1}{6} - 1 + \frac{1}{2} + 5\right] - \left[\frac{1}{6} + 1 + \frac{1}{2} - 5\right]$	m1		'their' $F(1) - F(-1)$ with powers of 1 and -1 evaluated correctly
	= 8	A1cso	5	
(ii)	'their answer to part (i)' -2	M1		
	\Rightarrow Area = 6	A1cso	2	
	Total		16	

Q	Solution	Marks	Total	Comments
5(a)	$p(-2) = (-2)^3 + (-2)^2 c + (-2)d - 12$	M1		p(-2) attempted or
				long division by $x+2$ as far as remainder
		-		
	'their' $-8 + 4c - 2d - 12 = -150$	ml		putting expression for remainder $= -150$
	$\Rightarrow 2c - d + 65 = 0$	Alcso	3	AG terms all on one side in any order
				(check that there are no errors in working)
(b)	$(2) 2^3 + 2^2 + 2 + 12$	M1		n(3) attempted or
(0)	p(3) = 3 + 3 c + 3a - 12	1011		long division by $x=3$ as far as remainder
				Tong division by $x=5$ as far as remainder
	9c + 3d + 15 = 0	A 1	2	any correct equation with terms collected
	<i>ye + 5u + 15 - 0</i>		2	any concert equation with terms concerted $a_{2}^{2} = 5$
				eg 5c + a = -5
(c)	2c - d + 65 = 0 . 5 70			
	$3c+d+5=0$ \Rightarrow $5c=-70$	MI		Elimination of c or d
		A 1		
	$\Rightarrow c = -14$, $a = 37$ OE		2	both a and d correct unsimplified
	Total	AI	2 8	
((a)	Sides are r and $r \pm 4$		0	
0(a)	$\overrightarrow{x} = \overrightarrow{x} = $			
	$\rightarrow x + x + x + 4 + x + 4 > 50$			
	or $2x + 2x + 8 > 30$			must see this line OF
	or 2(2x+4) > 30			
	or $4x + 8 > 30$			
	$(\Rightarrow 4x > 22)$			
	$\rightarrow 2r > 11$	R 1	1	AC (be convinced) condone $11 < 2r$
		DI	1	AG (be convinced) condone $11 < 2x$
	r(r+4) < 96			must see this line OF
(U)	x(x+4) < 50			must see uns mie OE
	$\Rightarrow x^2 + 4x - 96 < 0$	B1	1	AG
(c)	(x+12)(x-8)	M1		correct factors or correct quadratic
				equation formula
	Critical values 8, -12	AI		
	y f or			
	$ -12\rangle$ $ /8$ x $(+)$ $(-)$ $(+)$	M1		skatch or sign diagram
		1011		sketch of sign diagram
	-12 8			
	10 0			
	$\Rightarrow -12 < x < 8$	A1cso	4	accept $x < 8$ AND $x > -12$
				but not $x < 8$ OR $x > -12$
				nor $x < 8$, $x > -12$
(.)	$5^1 \leq r \leq 8$	D1	1	
(d)	$\begin{vmatrix} 3-\langle x < 0 \\ 2 \end{vmatrix}$	BI	1	
	Total		7	

	MPC1 ((cont)
--	--------	--------

Q	Solution	Marks	Total	Comments
7(a)	$(x+7)^2 + (y-5)^2$	M1		one term correct ; condone $(x - 7)^2$
		A1		both terms correct with squares
				and plus sign between terms
	$(x+7)^2 + (y-5)^2 = 5^2$	A1cao	3	condone 25 for 5^2
	$C(\overline{z}, \overline{z})$			
(b)(i)	C (-7, 5)	BI√		correct or FT their circle equation
(ii)	<i>r</i> = 5	B1√	2	correct or FT 'their' $r^2 > 0$
				condone $\sqrt{25}$ etc but not $\pm\sqrt{25}$
(c)	must draw axes	M1		freehand circle with C correct or FT
		1011		'their C' for quadrant of centre
			2	
		AI	2	circle touching x-axis at -7 with -7 marked (need not show 5 on y-axis)
	-7			but circle must not touch y-axis
(a)(1)	$x^{2} + (kx+6)^{2} + 14x - 10(kx+6) + 49 = 0$			clear attempt to sub $y = kx + 6$ into original or 'their' circle equation
	$x^{2} + k^{2}x^{2} + 12kx + 36 + 14x$			origination then encle equation
	-10kx - 60 + 49 = 0	M1		<i>and</i> attempt to multiply out
	$(1+k^2)x^2 + 2kx + 14x + 25 = 0$			
	$\Rightarrow (k^2 + 1)x^2 + 2(k+7)x + 25 = 0$	A1cso	2	AG condone $x^2(1+k^2) + 2x(7+k) +$ etc
				allow statement alone if discriminant in
(ii)	Equal roots $b^2 - 4ac = 0$	B1		terms of k attempted
	$\left\lfloor 2(k+7)\right\rfloor^2 - 4 \times 25(k^2+1)$	M1		discriminant (condone one slip)
	$4\left\{k^2 + 14k + 49 - 25k^2 - 25\right\} = 0$			
	$-24k^2 + 14k + 24 = 0$			
	$\Rightarrow 12k^2 - 7k - 12 = 0$	A1	3	AG all working correct
				out – O must appear before fast fille
(iii)	(4k+3)(3k-4)	M1		correct factors or correct use of
				formula as far as $k = \frac{7 \pm \sqrt{49 + 576}}{100}$
	2 4			24
	$\Rightarrow k = -\frac{5}{4}, \ k = \frac{4}{3}$ OE	A1	2	
	are values of k for which line is a tangent			
	Total		14	
	ТОТАL		75	

Version 1.0

General Certificate of Education (A-level) June 2012

Mathematics

MPC1

(Specification 6360)

Pure Core 1

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2012 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX.
Μ	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
А	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
\checkmark or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
-x EE	deduct <i>x</i> marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Q	Solution	Marks	Total	Comments
1	$\frac{5\sqrt{3}-6}{2\sqrt{3}+3} \times \frac{2\sqrt{3}-3}{2\sqrt{3}-3}$	M1		
	(Numerator =) $30 - 15\sqrt{3} - 12\sqrt{3} + 18$	m1		$\operatorname{correct}\left(=48-27\sqrt{3}\right)$
	(Denominator = 12 - 9 =) 3	B1		must be seen as denominator
	$\left(\frac{48-27\sqrt{3}}{3}\right) = 16-9\sqrt{3}$	A1	4	CSO; accept $16 + -9\sqrt{3}$
	Total		4	
2(a)(i)	$y = \frac{4}{3}x - \frac{7}{3}$	M1		$y = \pm \frac{4}{3}x + k$ or $\frac{\Delta y}{\Delta x}$ with 2 correct points
	\Rightarrow grad $AB = \frac{4}{3}$	A1	2	condone slip in rearranging if gradient is correct; condone 1.33 or better
(ii)	y = 'their grad' $x+c$ and attempt to use $x = 3$, $y = -5$	M1		or $y - 5 =$ 'their grad $AB'(x-3)$ or $4x - 3y = k$ and attempt to find k using $x = 3$ and $y = -5$
	$ y + 5 = \frac{4}{3}(x - 3) $ or $y = \frac{4}{3}x - \frac{27}{3} $	A1		correct equation in any form but must simplify – – to +
	4x - 3y = 27	A1	3	eg $-8x + 6y = -54$
(b)	$4x - 3y = 7 \text{ and } 3x - 2y = 4$ $\Rightarrow 8x - 9x = 14 - 12 \text{ etc}$ $x = -2$ $y = -5$	M1 A1	2	must use correct pair of equations and attempt to eliminate x or y (generous) or $D(-2, -5)$
	y = -5	AI	5	(-2,-3)
(c)	4(k-2)-3(2k-3)=7			sub $x = k - 2$, $y = 2k - 3$ into $4x - 3y = 7$
	4k - 8 - 6k + 9 = 7	M1		and attempt to multiply out with all <i>k</i> terms on one side (condone one slip)
	$\Rightarrow k = -3$	A1	2	
	Total		10	

MPC1

Q	Solution	Marks	Total	Comments
3(a)(i)	$p(-1) = (-1)^3 + 2(-1)^2 - 5(-1) - 6$	M1		p(-1) attempted not long division
	$p(-1) = -1 + 2 + 5 - 6 = 0 \implies x + 1$ is a factor	A1	2	CSO; correctly shown = 0 plus statement
(ii)	Quad factor in this form: $(x^2 + bx + c)$	M1		long division as far as constant term <i>or</i> comparing coefficients, <i>or</i> $b = 1$ <i>or</i> $c = -6$ by inspection
	$x^{2} + x - 6$	A1		correct quadratic factor
	$\left[p(x)=\right](x+1)(x+3)(x-2)$	A1	3	must see correct product
(b)	p(0) = -6; $p(1) = -8$	M1		both $p(0)$ and $p(1)$ attempted and at least one value correct
	$\Rightarrow p(0) > p(1)$	A1	2	AG both values correct plus correct statement involving p(0) and p(1)
(c)	y t	M1		cubic with one max and one min
		Al		$/\bigvee$ with -3 , -1 , 2 marked
	$\int -3 -1 \int 2 x$	A1	3	y-axis AND going beyond –3 and 2
	Total		10	

Q	Solution	Marks	Total	Comments
4(a)(i)	$3x^2 + 3x^2 + xy + xy + 3xy + 3xy$	M1		correct expression for surface area
	$6x^2 + 8xy = 32$			$2(3x^2 + xy + 3xy) = 32$ etc
	$\Rightarrow 3x^2 + 4xy = 16$	A1	2	AG be convinced
(ii)	$(V =)3x^2y$ OE	M1		correct volume in terms of x and y
	$= 3x \left(\frac{16 - 3x^2}{4}\right) \text{ or } = 3x^2 \left(\frac{16 - 3x^2}{4x}\right)$			OE
	$=12x-\frac{9x^3}{4}$	A1	2	CSO AG be convinced that all working is correct
(b)	$\left(\frac{\mathrm{d}V}{\mathrm{d}x}\right) = 12 - \frac{27}{4}x^2$	M1 A1	2	one of these terms correct all correct with 9×3 evaluated (no + c etc)
(c)(i)	$x = \frac{4}{3} \Longrightarrow \frac{\mathrm{d}V}{\mathrm{d}x} = 12 - \frac{27}{4} \times \left(\frac{4}{3}\right)^2$	M1		attempt to sub $x = \frac{4}{3}$ into ' <i>their</i> ' $\frac{dV}{dx}$
	$\frac{\mathrm{d}V}{\mathrm{d}x} = 12 - \frac{27}{4} \times \frac{16}{9} = 12 - 12$			or $12 - \frac{432}{36} = 12 - 12$ or $12 - \frac{48}{4} = 0$ etc
	$\frac{\mathrm{d}V}{\mathrm{d}x} = 0 \implies \text{stationary value}$	A1	2	CSO; shown = 0 plus statement
(ii)	$\frac{\mathrm{d}^2 V}{\mathrm{d}x^2} = -\frac{27x}{2} \qquad \mathrm{OE}$	B 1√		FT for ' <i>their</i> ' $\frac{dV}{dx} = a + bx^2$
	when $x = \frac{4}{3}$, $\frac{d^2 V}{dx^2} < 0 \implies \text{maximum}$	E1√	2	or sub of $x = \frac{4}{3}$ into <i>'their'</i> $\frac{d^2 V}{dx^2}$ \Rightarrow maximum
	$\left(\text{FT "minimum" if their } \frac{d^2 V}{dx^2} > 0 \right)$			E0 if numerical error seen
	Total		10	

MPC1

MPC1	MPC1					
Q	Solution	Marks	Total	Comments		
5(a)(i)	$\left(x-\frac{3}{2}\right)^2$	M1		or $p = 1.5$ stated		
	$\left(x-\frac{3}{2}\right)^2+\frac{11}{4}$	A1	2	$(x-1.5)^2 + 2.75$		
	Mark their final line as their answer					
(ii)	$x = \frac{3}{2}$	B1√	1	correct or FT their " $x = p$ "		
(b)(i)	$x^2 - 3x + 5 = x + 5 \Longrightarrow x^2 = 4x$	M1		eliminating x or y and collecting like terms (condone one slip)		
				or $(y-5)^2 - 3(y-5) + 5 = y$		
				$\Rightarrow y^2 - 14y + 45 = 0$		
	$(x \neq 0) \qquad \Rightarrow x = 4$	A1				
	y = 9	A1	3			
(••)	x^{3} $3x^{2}$	M1		one of these terms correct		
(11)	$\frac{1}{3} - \frac{1}{2} + 5x(+c)$		2	another term correct all correct (need not have $(-a)$)		
		AI	5	an confect (need not have $+c$)		
(iii)	$\begin{bmatrix} \end{bmatrix}_{0}^{4} = \frac{4^{3}}{3} - 3 \times \frac{4^{2}}{2} + 5 \times 4$	M1		must have earned M1 in part(b)(ii) $F(\text{their } x_B) \{-F(0)\}$ "correctly sub'd"		
	$=17\frac{1}{3}$	A1		$\left(\frac{64}{3} - 24 + 20\right) = \frac{52}{3}$ or $\frac{104}{6}$ etc		
				condone 17.3 but not $16\frac{4}{3}$ etc		
	Area trapezium $=\frac{1}{2}(x_B)(5+y_B)$	B1√		FT their numerical values of x_B, y_B		
	_			Area = $\frac{1}{2} \times 4 \times 14$ (= 28)		
	Area of shaded region = $28 - 17\frac{1}{3}$					
	$=10\frac{2}{3}$	A1	4	CSO; $\frac{32}{3}$, accept 10.7 or better		
	Total		13			

6

	Solution	Morlza	Total	Commonts
<u> </u>	$\frac{\text{Solution}}{(-\tau)^2}$	IVIAI'KS	Total	Comments
6(a)	$(x-5)^{-} + (y-8)^{-}$	B1		
	= 25	B1	2	condone 5 ²
(b)(i)	$(2-5)^2 + (12-8)^2$			or $AC^2 = 3^2 + 4^2$
	=9+16 = 25	D1	1	hence $AC = 5$; (also radius = 5)
	\rightarrow A nes on chicle	DI	1	$(\Rightarrow \text{ radius} = AC) \Rightarrow A \text{ lies on circle}$
	(must have concluding statement and			(must have concluding statement & RHS of circle equation correct or $r = 5$ stated if
	circle equation correct if using equation)			Pythagoras is used)
(ii)	grad $AC = -\frac{4}{2}$	B1		
	3			
	Gradient of tangent is $\frac{3}{4}$	B1√		FT their $-1/$ grad AC
	y-12 = 'their tangent grad'(x-2)	M1		or $y =$ 'their tangent grad' $x + c$ & attempt to find <i>c</i> using $x = 2$, $y = 12$
	$y-12 = \frac{3}{4}(x-2)$ or $y = \frac{3}{4}x + \frac{21}{2}$ etc	A1		correct equation in any form
	3x - 4y + 42 = 0	A1	5	CSO; must have integer coefficients with all terms on one side of equation accept $0 = 8y - 6x - 84$ etc
(c)(i)	$(CM^2 =)$ $(7-5)^2 + (12-8)^2$	M1		or $(CM^2 =)$ 20
	$(\Rightarrow CM = \sqrt{20}) \Rightarrow (CM =) 2\sqrt{5}$	A1	2	
(ii)	$PM^2 = PC^2 - CM^2 = 25 - 20$	M1		Pythagoras used correctly
				eg $d^2 + (2\sqrt{5})^2 = 5^2$
	$\Rightarrow PM = \sqrt{5}$	A1		
	Area $\triangle PCQ = \sqrt{5} \times 2\sqrt{5}$			
	= 10	A1	3	CSO
	Total		13	

MPC1

				~
Q	Solution	Marks	Total	Comments
7(a)(i)	$ (\text{Increasing} \Rightarrow) \frac{dy}{dx} > 0 \\ 20x - 6x^2 - 16 > 0 $ either	M1		correct interpretation of <i>y</i> increasing
	$\Rightarrow 6x^{2} - 20x + 16 < 0$ or (2) $(10x - 3x^{2} - 8) > 0$			must see at least one of these steps before final answer for A1
	$\Rightarrow 3x^2 - 10x + 8 < 0$	A1	2	CSO AG no errors in working
(ii)	(3x-4)(x-2)	M1		correct factors or correct use of quadratic equation formula as far as $\frac{10 \pm \sqrt{4}}{6}$
	CVs are $\frac{4}{2}$ and 2			condone $\frac{8}{2}$ and $\frac{12}{2}$ here but not in final
	3 44 2	A1		6 6
	$\begin{array}{c c} & & & & & & \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\$	M1		line sketch or sign diagram
	$\frac{4}{2} < x < 2$	A1	4	or $2 > x > \frac{4}{2}$
	3			3
				accept $x < 2$ AND $x > \frac{4}{3}$
	Mark their final line on their answer			but not $x < 2$ OR $x > \frac{4}{3}$
	mark ineir jinai une as ineir answer			nor $x < 2$, $x > \frac{4}{3}$

Q	Solution	Marks	Total	Comments
7(b)(i)	$x = 2 ; \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) = 40 - 24 - 16$	M1		sub $x = 2$ into $\frac{dy}{dx}$ and simplify terms
	$\frac{dy}{dx} = 0 \implies \text{tangent at } P \text{ is parallel to}$ the <i>x</i> -axis	A1	2	must be all correct working plus statement
(ii)	$x = 3$; $\frac{dy}{dx} = 20 \times 3 - 6 \times 3^2 - 16$	M1		must attempt to sub $x = 3$ into $\frac{dy}{dx}$
	(=60-54-16) = -10	A1		_1
	Gradient of normal $=\frac{1}{10}$	A1√		$\frac{1}{"their -10"}$
	Normal: $(y - 1) = $ 'their grad' $(x - 3)$	m1		normal attempted with correct coordinates
				used and gradient obtained from their $\frac{dy}{dx}$ value
	$y+1 = \frac{1}{10}(x-3)$	A1		any correct form, eg $10y = x - 13$ but must simplify $$ to $+$
	(Equation of tangent at P is) $y = 3$	B1		
	<i>x</i> = 43	A1	7	$CSO; \Rightarrow R(43, 3)$
	Total		15	
	TOTAL		75	

Version

General Certificate of Education (A-level) January 2013

Mathematics

MPC1

(Specification 6360)

Pure Core 1

Final

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2013 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX.

М	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
А	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
\sqrt{or} ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
-x EE	deduct <i>x</i> marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

ľ	MPC1					
Ļ	Q	Solution	Marks	Total	Comments	
	1(a) (i)	21 + 5k = 1			condone $3 \times 7 + 5k = 1$	
		$\Rightarrow k = -4$	B1	1	AG condone $y = -4$	
	(ii)	(x =) 2 (y =) -1	B1 B1	2	midpoint coords are (2, -1)	
	(b)	$y = \frac{1}{5} - \frac{3}{5}x$	M1		obtaining $y = a \pm \frac{3}{5}x$	
		(Gradient $AB =) -\frac{3}{5}$	A1	2	or $\frac{\Delta y}{\Delta x} = \frac{-4-2}{73}$ or $\frac{-1-2}{23}$ or $\frac{-41}{7-2}$ condone one sign error in expression allow -0.6 , $\frac{6}{-10}$ etc for A1 & condone error in rearranging if gradient is correct.	
	(c)	Perp grad = $\frac{5}{3}$	M1		-1/ "their" grad AB	
		$y-2 = \frac{5}{3}(x+3)$ or $y = \frac{5}{3}x+c$, $c = 7$ etc	A1		correct equation in any form (must simplify $x3$ to $x+3$ or c to a single term equivalent to 7)	
		5x - 3y + 21 = 0	A1	3	or any multiple of this with integer coefficients –terms in any order but all terms on one side of equation	
	(d)	3x + 5y = 1 and $5x + 8y = 4\Rightarrow P x = Q or R y = Sx = 12y = -7$	M1 A1 A1	3	must use correct pair of equations and attempt to eliminate y (or x) (generous)	
		y — '		5	(12, -/)	
Ĺ		Total		11		

Q	Solution	Marks	Total	Comments
2(a)	$\left(\frac{\mathrm{d}y}{\mathrm{d}t}\right) = \frac{4t^3}{8} - 2t$	M1 A1	2	one of these terms correct all correct (no $+ c$ etc)
(b)(i)	$t = 1 \implies \frac{\mathrm{d}y}{\mathrm{d}t} = \frac{4}{8} - 2$	M1		Correctly sub $t = 1$ into their $\frac{dy}{dt}$
	$=-1\frac{1}{2}$	A1cso	2	must have $\frac{dy}{dt}$ correct (watch for t^3 etc)
(ii)	$\frac{\mathrm{d}y}{\mathrm{d}t} < 0$			must have used $\frac{dy}{dt}$ in part (b)(i)
	\Rightarrow (height is) decreasing (when $t = 1$)	E1√	1	must state that " $\frac{dy}{dt} < 0$ " or "-1.5 < 0" or the equivalent in words
				FT their value of $\frac{dy}{dt}$ with appropriate
				explanation and conclusion
(c)(i)	$\left(\frac{\mathrm{d}^2 y}{\mathrm{d}t^2}\right) = \frac{4}{8} \times 3t^2 - 2$	M1		Correctly differentiating their $\frac{dy}{dt}$ even if wrongly simplified
	$\left(t=2, \frac{\mathrm{d}^2 y}{\mathrm{d}t^2}=\right) 4$	A1cso	2	Both derivatives correct and simplified to 4
(ii)	⇒minimum	E1√	1	FT their numerical value of $\frac{d^2 y}{dt^2}$ from part (c) (i)
	Total		8	

MPC1 (cont)

Q	Solution	Marks	Total	Comments
3(a)(i)	$\sqrt{18} = 3\sqrt{2}$	B1	1	Condone $k = 3$
(ii)	$\frac{2\sqrt{2}}{3\sqrt{2}+4\sqrt{2}}$	M1 A1		attempt to write each term in form $n\sqrt{2}$ with at least 2 terms correct correct unsimplified
	$=\frac{2}{7}$	A1	3	
				or $\times \frac{\sqrt{2}}{\sqrt{2}}$ M1
				integer terms $=\frac{4}{6+8}$ A1
				$=\frac{2}{7}$ A1
(b)	$\frac{7\sqrt{2} - \sqrt{3}}{2\sqrt{2} - \sqrt{3}} \times \frac{2\sqrt{2} + \sqrt{3}}{2\sqrt{2} + \sqrt{3}}$	M1		
	(numerator =) $14 \times 2 - 2\sqrt{6} + 7\sqrt{6} - 3$	m1		correct unsimplified but must simplify $\left(\sqrt{2}\right)^2$, $\left(\sqrt{3}\right)^2$ and $\sqrt{2} \times \sqrt{3}$ correctly
	(denominator = 8 - 3 =) 5	B1		must be seen or identified as denominator giving $\frac{25+5\sqrt{6}}{25+5\sqrt{6}}$
	_			5
	(Answer =) $5 + \sqrt{6}$	Alcso	4	m = 5, n = 6
	Total		8	

MPC1 (cont)

MPC1 (cont)					
Q	Solution	Marks	Total	Comments	
4(a)(i)	$(x-3)^2$	M1		or $p = 3$ seen	
	$(x-3)^2 + 2$	A1	2		
(ii)	$(x-3)^2 = -2$	M1		FT their positive value of q	
	No (real) square root of -2 therefore equation has no real solutions	A1cso	2	not use of discriminant for graphical approach see below to see if SC1 can be awarded	
(b)(i)	x = 'their' p or $y =$ 'their' $qVertex is at (3, 2)$	M1 A1cao	2	or $x = 3$ found using calculus	
(ii)	V	B1		y intercept = 11 <i>stated</i> or <i>marked on y</i> - axis (as y intercept of any graph)	
		M1		\cup shape (generous)	
		A1	3	above <i>x</i> -axis , vertex in first quadrant crossing <i>y</i> -axis into second quadrant	
(iii)	Translation $\begin{bmatrix} x \\ z \end{bmatrix}$	E1		and no other transformation	
	through $\begin{bmatrix} -3\\ -2 \end{bmatrix}$	M1		FT negative of BOTH 'their' vertex coords	
		A1	3	both components correct for A1; may describe in words or use a column vector	
	Total		12		

MPC1 (cont	t)			
Q	Solution	Marks	Total	Comments
5(a)	$p(-1) = (-1)^3 - 4 \times (-1)^2 - 3(-1) + 18$	M1		p(-1) attempted not long division
	(=-1-4+3+18) = 16	A1	2	
(b)(i)	$p(3) = 3^3 - 4 \times 3^2 - 3 \times 3 + 18$	M1		p(3) attempted not long division
	$p(3)=27-36-9+18=0 \implies x-3 \text{ is a factor}$	A1	2	shown = 0 plus statement
(ii)	Quadratic factor $(x^2 - x + c)$ or $(x^2 + bx - 6)$	M1		-x or -6 term by inspection
	Quadratic factor $(x^2 - x - 6)$	A1		<i>or</i> full long division by $x - 3$ <i>or</i> comparing coefficients <i>or</i> p(-2) attempted correct quadratic factor (or $x+2$ shown to be factor by Factor Theorem)
	$\left[p(x)=\right] (x-3)(x-3)(x+2)$	A1	3	or $[p(x)=](x-3)^2(x+2)$ must see product of factors
(c)	y t	M1		cubic curve with one maximum and one minimum
	-2 3 x	A1		meeting <i>x</i> -axis at -2 and touching <i>x</i> -axis at 3
	Final A1 is dependent on previous A1 and can be withheld if curve has very poor curvature beyond $x = 3$, V shape at $x = 3$ etc	A1	3	graph as shown , going beyond $x = -2$ but condone max on or to right of <i>y</i> -axis
	Total		10	

Q	Solution	Marks	Total	Comments
6(a)	(Gradient = 10 - 6 + 5) = 9	B1		correct gradient from sub $x = 1$ into $\frac{dy}{dx}$
	y-4 = "their 9" (x-1) or $y = "their 9" x + c$ and attempt to find <i>c</i> using $x = 1$ and $y = 4$	M1		must attempt to use given expression for $\frac{dy}{dx}$ and must be attempting tangent and not normal and coordinates must be correct
	y = 9x - 5	A1	3	condone $y = 9x + c, \dots c = -5$
(b)	$(y=)\frac{10}{5}x^5 - \frac{6}{3}x^3 + 5x + C$	M1		one term correct
		A1		another term correct
		AI		an integration correct including + C
	$4 = 2 - 2 + 5 + C$ $\Rightarrow C = -1$	m1		substituting both $x = 1$ and $y = 4$ and attempting to find <i>C</i>
	$y = 2x^5 - 2x^3 + 5x - 1$	A1cso	5	must have $y =$ and coefficients simplified
	Total		8	

MPC1 (cont)

Q	Solution	Marks	Total	Comments
7 (a)	$x = 0 \Longrightarrow y^2 - 4y - 12 \ (=0)$	M1		sub $x = 0$ & correct quadratic in y
				or $(y-2)^2 = 16$ or $(y-2)^2 - 16 = 0$
	(y-6)(y+2) (=0)	A1		correct factors
				or formula as far as $\frac{4\pm\sqrt{64}}{2}$
				or $y-2=\pm\sqrt{16}$
	\Rightarrow y = -2, 6	A1	3	condone (0, -2) & (0, 6)
(b)	$(x+3)^2 - 9 + (y-2)^2 - 4 (=12)$	M1		<i>correct</i> sum of square terms and attempt to complete squares (or multiply out) PI by next line
	$\left(r^2=\right) 9+4+12$	A1		$(r^2 =)25$ seen on RHS
	$(\Rightarrow r =) 5$	A1	3	$r = \sqrt{25}$ or $r = \pm 5$ scores A0
(c)(i)	$(CP^2 =)$ $(23)^2 + (5 - 2)^2$	M1		condone one sign slip within one bracket
	\Rightarrow (<i>CP</i> =) $\sqrt{34}$	A1	2	<i>n</i> = 34
(ii)	$PQ^{2} = CP^{2} - r^{2} = 34 - 25$ $(\Rightarrow PQ =) 3$	M1 A1	2	Pythagoras used correctly with values FT "their" <i>r</i> and <i>CP</i>
	Total		10	

MPC1	(cont)
MPCI	(cont

MPC1	(cont)
------	--------

Q	Solution	Marks	Total	Comments
8 (a)	$2x^2 - x - 1 = 2kx - 3k$			equated and multiplied out
	$2x^2 - x - 1 - 2kx + 3k = 0 OE$			and all 5 terms on one side and $= 0$
	$\Rightarrow 2x^2 - (2k+1)x + 3k - 1 = 0$	B 1	1	AG
		DI	1	(correct with no trailing = signs etc)
(b)(i)	$(2k+1)^2 - 4 \times 2(3k-1)$	M1		clear attempt at $b^2 - 4ac$
	$(2k+1)^2 - 4 \times 2(3k-1) > 0$	B1		discriminant > 0 which must appear before the printed answer
	$4k^2 + 4k + 1 - 24k + 8 > 0$			
	$\rightarrow 4k^2 - 20k + 9 > 0$. 1	2	
		Alcso	3	AG (all working correct with no missing brackets etc)
(ii)	$4k^2 - 20k + 9 = (2k - 9)(2k - 1)$	M1		correct factors or correct use of
				formula as far as $\frac{20 \pm \sqrt{256}}{8}$
	critical values are $\frac{1}{2}$ and $\frac{9}{2}$	A1		condone $\frac{4}{8}$, $\frac{36}{8}$ etc here but must
				combine sums of fractions
	$\uparrow \setminus \qquad /$	M1		sketch or sign diagram including values
	$\frac{1}{2}$ $\frac{y}{2}$ k			+ _ + 0.5 4.5
	$k < \frac{1}{2}, k > \frac{9}{2}$	A1	4	fractions must be simplified condone use of OR but not AND
	Lune men jindi une as men answer Total		8	
	TOTAL		75	
L	TOTHE			I

Version 1.0

General Certificate of Education (A-level) June 2013

Mathematics

MPC1

(Specification 6360)

Pure Core 1

Final

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2013 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX.

М	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
А	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
\sqrt{or} ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
-x EE	deduct <i>x</i> marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Q	Solution	Marks	Total	Comments
1(a)	3p - 4(p + 2) + 5 = 0	M1		condone omission of brackets or one sign error
	$(\Rightarrow p =) -3$	A1	2	
(b)	$y = \frac{3}{4}x + \frac{5}{4}$	M1		rearranging into form $y = \pm \frac{3}{4}x + c$
	(gradient $AB =$) $\frac{3}{4}$	A1	2	condone slips in rearranging if gradient is correct.
(c)	(gradient $AC =$) $\frac{k-2}{-5-1}$	M1		or $\frac{2-k}{1-5}$ (condone one sign error)
	"their" $\frac{(k-2)}{-6} \times \frac{3}{4} = -1$ OE	m1		product of grads = -1 in terms of k
	$(\Rightarrow k =)$ 10	A1	3	
(d)	3x - 4y + 5 = 0 and 2x - 5y = 6 $\Rightarrow P x = Q \text{ or } R y = S$ x = -7 y = -4	M1 A1 A1	3	must use "correct" pair of equations and attempt to eliminate y (or x) (generous) (-7, -4)
	Total		10	

Q	Solution	Marks	Total	Comments
2(a)(i)	$\left(\sqrt{48} = \right)4\sqrt{3}$	B1	1	condone $n = 4$. No ISW.
(ii)	$\sqrt{12} = 2\sqrt{3}$ and $\sqrt{48} = 4\sqrt{3}$	M1		(FT 'their'n) $2x\sqrt{3} = 7\sqrt{3} - 4\sqrt{3}$
	$(x=)\frac{7\sqrt{3}-4\sqrt{3}}{2\sqrt{3}}$	A1		correct quotient unsimplified
				or correct equation in integers eg $6x = 21 - 12$
	$=\frac{3}{2}$	A1cso	3	accept 1.5 but not $\frac{9}{6}$ etc
				alternative 1 $x = \frac{7\sqrt{3} - \sqrt{48}}{\sqrt{12}} \qquad \times \frac{\sqrt{12}}{\sqrt{12}} \qquad M1$
				integer terms = $\frac{42-24}{12}$ A1
				$=\frac{3}{2}$ A1
(b)	$\frac{11\sqrt{3} + 2\sqrt{5}}{2\sqrt{3} + \sqrt{5}} \times \frac{2\sqrt{3} - \sqrt{5}}{2\sqrt{3} - \sqrt{5}}$	M 1		
	(numerator =) $22 \times 3 + 4\sqrt{15} - 11\sqrt{15} - 2 \times 5$	A1		correct unsimplified but must simplify $(\sqrt{3})^2$, $(\sqrt{5})^2$ and $\sqrt{3} \times \sqrt{5}$ correctly
	(denominator = 12 - 5 =) 7	B1		must be seen or identified as denominator giving $\frac{56 - 7\sqrt{15}}{7}$
	(Answer =) $8 - \sqrt{15}$	A1cso	4	/ <i>m</i> = 8
	Total		8	

Q	Solution	Marks	Total	Comments
3 (a)	$(x-5)^2 + (y+7)^2$	M1		one term correct
		A1		both terms correct and added
	$(x-5)^2 + (y+7)^2 = 49$	A1cao	3	must see 49 not just 7 ²
				condone $(x-5)^2 + (y-7)^2 = 49$
(b)(i)	(Centre is) (5, –7)	B 1√	1	correct or FT their <i>a</i> and <i>b</i>
(ii)	Radius $= 7$	B 1√	1	condone $\sqrt{49}$ but no t ± 7 or $\pm \sqrt{49}$
				correct or FT their \sqrt{k} provided $k > 0$
(c)(i)	У.	M1		freehand circle with centre in correct
	$\xrightarrow{5} x$			must have both axes shown clearly
				correct position cutting negative y-axis
		A1	2	twice and touching x-axis at $x = 5$
				5 must be marked on <i>x</i> -axis or centre
				clearly marked as $(5, -7)$ must have correct centre and radius in (b)
(ii)	x = 5	B1	2	(5 14)
	y = -14	BI	2	(5, -14)
(d)	Translation	E1		and no other transformation
	[6]			
	through $\begin{bmatrix} 0\\ *\end{bmatrix}$	M1		
	[6]	A 1	2	both components correct for A1; may
	7	Alcso	3	describe in words or use a column vector
			10	
	Total		12	

Q	Solution	Marks	Total	Comments
4(a)	$f(-3) = (-3)^3 - 4 \times (-3) + 15$	M1		f(-3) attempted not long division
	f(-3) = -27 + 12 + 15	A 1	2	the second of the second second
	$= 0 \implies x+3$ is a factor	AI	2	shown = 0 plus statement
(;;)	Oundratic factor $(r^2 - 3r + 5)$	MI		2. on 1.5 terms by increation
(11)	Quadratic factor $(x - 5x + 5)$	101 1		-5x or $+5$ term by inspection
	(c, c) (c, c) (c, c)			or full long division attempt
	$(f(x) =) (x+3)(x^2 - 3x + 5)$	A1	2	must see correct product
(b) (i)	$\left(\frac{dy}{dx}\right) = 4x^3 - 16x + 60$	M1		one of these terms correct
(0) (1)	$\left(dx \right)^{1/2}$	A1		another term correct
		A1	3	all correct (no $+c$ etc)
(ii)	$4x^3 - 16x + 60 = 0$			must see this line OE
	$\Rightarrow x^3 - 4x + 15 = 0$	B1	1	AG
				-
(iii)	Discriminant of quadratic = $(-3)^2 - 4 \times 5$	M1		discriminant of "their" quadratic or
	Distriminant of quadratic (5) (7.5)			correct use of quad eqn "formula"
				concer use of quad eqn formula
	$b^2 - 4ac = -11 \ (or \ b^2 - 4ac < 0)$			correct discriminant evaluated
	therefore quadratic has no (real)roots			correctly (or shown to be < 0) with
	Hence only stationary point is when $x = -3$	Δ.1	2	appropriate conclusion
	Thence only stationary point is when $x = -3$	AI	2	plus mai statement
	$\left(d^{2} y \right)$			
(iv)	$\left(\frac{x^{2}}{dx^{2}}\right) = 12x^{2} - 16$	B1√		
	$12(2)^2$ 16 (12.00 16 etc)	241		sub $x = -3$ into "their" $\frac{d^2y}{d^2y}$
	$= 12(-3) - 16$ (or $12 \times 9 - 16$ etc)	MI		dx^2
	= 92	A1	3	
	$d^2 v$			FT appropriate conclusion from their
(v)	Minimum since $\frac{d^2 y}{dx^2} > 0$ (or 92 > 0 etc)	E1√	1	value from (iv) plus reason
				treat parts (iv) & (v) holistically
	Total		14	

Q	Solution	Marks	Total	Comments
5(a)(i)	$2(x+1.5)^2$	M1		OE
	$2(x+1.5)^2+0.5$	A1	2	$2(x+\frac{3}{2})^2+\frac{1}{2}$ OE
(ii)	(Minimum value is) 0.5	B 1√	1	ft their q
(b)(i)	$(AB^{2} =) (x+3)^{2} + (3x+9-5)^{2}$	M1		condone one sign error inside one bracket
	$(3x+4)^2 = 9x^2 + 24x + 16$	B1		OE
	$AB^{2} = x^{2} + 6x + 9 + 9x^{2} + 24x + 16 = 10x^{2} + 30x + 25$ $\Rightarrow AB^{2} = 5(2x^{2} + 6x + 5)$	A1cso	3	AG
(ii)	Either $\sqrt{5 \times 'their' (\mathbf{a})(\mathbf{i}\mathbf{i})}$ or $5 \times 'their' (\mathbf{a})(\mathbf{i}\mathbf{i})$	M1		using their minimum value from $(a)(ii)$ and 5
	(Minimum length of $AB = 1$) $\frac{1}{2}\sqrt{10}$	A1cso	2	provided their $(\mathbf{a})(\mathbf{n}) > 0$
	Total		8	
6(a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 5x^4 - 4x$	M1 A1		one of these terms correct all correct (no +c etc)
	$\left(=5(-1)^4 - 4(-1)\right) = 9$	A1		
	Tangent has equation $y = 'their 9' x + c$ and $6 = 'their 9' (-1) + c \implies c =$	m1		tangent using 'their' gradient, and attempt to find <i>c</i> using x = -1 and $y = 6$
	$\Rightarrow y = 9x + 15$	A1	5	equation must be seen in this form
(b)(i)	When $x = 2$, $y = 2^5 - 2 \times 2^2 + 9 = 32 - 8 + 9 = 33$ (k =) 33	B1	1	be convinced that they are using curve equation NMS $k = 33$ scores B0
(ii)	When $x = 2$, $y = 9 \times 2 + 15 = 33$ so lies on tangent	B1	1	be convinced that they are using tangent equation and have statement

Q	Solution	Marks	Total	Comments
6(c)(i)	$x^{6} = 2x^{3}$	M1		one of these terms correct
	$\frac{1}{6} - \frac{-1}{3} + 9x$	A1		another term correct
		AI		all correct (may have $+c$)
	$\begin{bmatrix} 2^{6} - 2 \times 2^{3} + 9 \times 2 \end{bmatrix} = \begin{bmatrix} (-1)^{6} - 2 \times (-1)^{3} + 9 \times (-1) \end{bmatrix}$	m1		F(2) - F(-1) unsimplified FT
	$\begin{bmatrix} \hline 6 & 3 \end{bmatrix} \begin{bmatrix} \hline 6 & 3 \end{bmatrix} \begin{bmatrix} \hline 6 & 3 \end{bmatrix}$			"their terms" from integration
	$\begin{bmatrix} 64 & 16 \end{bmatrix} \begin{bmatrix} 1 & 2 \end{bmatrix}$			70 (49)
	$\begin{bmatrix}+18 \\ 6 & 3 \end{bmatrix} = \begin{bmatrix} -+9 \\ 6 & 3 \end{bmatrix}$			$=\frac{1}{3}-\left(-\frac{1}{6}\right)$
	= 31.5			
	$\left(ar^{189}ata\right)$	A1	5	condone single fraction
	$\left(\frac{0}{6}eic\right)$			
(ii)	Area of trapezium = $\frac{1}{2} \times 3 \times (6 + their k)$	B1√		= 58.5 when $k = 33$
()	2 Shadad area - Transrium (their' (a)(i) yelye	 M1		
	Shaded area = 1 rapezium – their (c)(1) value	IVI I		162
	= 27	A1	3	OE $eg \frac{102}{6}$
				0
	Total		15	
		2.54		
7(a)	$(k-2)^2 - 4 \times (2k-7)(k-3)$	MI		discriminant – condone one slip
	$k^{2} - 4k + 4 - 4(2k^{2} - 6k - 7k + 21)$	A1		-condone offission of brackets
	"their" $-7k^2 + 48k - 80 > 0$	B1		real roots condition : $f(k) \ge 0$
		21		must appear before final line
	$7k^2 - 48k + 80 \leq 0$	A1cso	4	AG (all working correct with no
				missing brackets etc)
(b)	$7k^2 - 48k + 80 - (7k - 20)(k - 4)$	M1		correct factors
	$7\pi - 40\pi + 60 - (7\pi - 20)(\pi - 4)$			49 - 774
				(or roots unsimplified) $\frac{48 \pm \sqrt{64}}{14}$
				56 40
	critical values are 4 and $\frac{20}{7}$	A1		accept $\frac{1}{14}$, $\frac{1}{14}$ etc here
	V .			
		M1		sketch or sign diagram including
				values
	20 $/_{1}$ x			+ _ +
	$\left \frac{1}{7} \right\rangle^{4}$			2.0
	-))			$\frac{20}{7}$ 4
				,
	$\frac{20}{4} \leq k \leq 4$			
		A1cao	4	tractions must be simplified here
	<i>1 ake their final line as their answer</i>			
	Total		8	
	TOTAL		75	

A-LEVEL Mathematics

Pure Core 1 – MPC1 Mark scheme

6360 June 2014

Version/Stage: Final V1.0

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from aqa.org.uk

Copyright © 2014 AQA and its licensors. All rights reserved.

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

М	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
А	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
–x EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
С	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

0	Solution	Mark	Total	Comment	
1	301011011	IVIAI K	Total	Comment	
(a)(i)	Grad $AB = \frac{-5-2}{31}$ OE	M1		correct unsimplified eg $\frac{25}{-1-3}$	
	$= -\frac{1}{4}$	A1	2		
(ii)	y5 = 'their grad' (x - 3) y - 2 = 'their grad' (x1)	M1		either pair of coordinates used correctly and attempt to find <i>c</i> if using $y=mx+c$	
	$y-2 = -\frac{7}{4}(x+1)$ y+5 = -\frac{7}{4}(x-3) y = -\frac{7}{4}x + \frac{1}{4}	A1		OE, any form of correct equation with $-$ simplified to +	
	7x + 4y = 1	A1	3	integer coefficients & in this form	
(b)(i)	(M) (1, -1.5)	B1	1	condone $x = 1$, $y = -\frac{3}{2}$	
(ii)	Perp grad = $\frac{4}{7}$	B1 √		perp grad = $-1/$ 'their' grad AB	
	$y\frac{3}{2} = 'their'\frac{4}{7}(x-1)$	M1		ft 'their <i>M</i> ' but must have attempted perpendicular gradient	
	$y + \frac{3}{2} = \frac{4}{7}(x - 1)$	A1	3	any correct form with $$ simplified to $+$ eg $8x - 14y = 29$; $y = \frac{4}{7}x + c$, $c = -\frac{29}{14}$	
(c)	$(AC^{2} =)$ $(k-1)^{2} + (2k+3-2)^{2}$	M1		$(k+1)^2 + (2k+1)^2$	
	$k^{2} + 2k + 1 + 4k^{2} + 4k + 1 - 13$	1711			
	$5k^2 + 6k - 11 = 0$	A1			
	(5k+11)(k-1) = 0	A1		correct factors or correct use of formula as far as $\frac{-6 \pm \sqrt{256}}{10}$	
	$\Rightarrow k = 1, k = -\frac{11}{5}$	A1	4		
	Total		13		
(a) (i) NMS grad $AB = -\frac{7}{2}$ earns 2 marks.					
(ii) must simplify $y = -5$ to $y + 5$ or $x = -1$ to $x + 1$ for first A1 Condone $8y + 14x = 2$ etc for final A1, but not $7x + 4y - 1 = 0$ etc					
(b)(ii) If the	For gradient of AB is m , then use of $-m$ or $1/m$	can earn l	M1.For	A1, $1/(\frac{7}{4})$, $\frac{14.5}{7}$ etc must be simplified.	
				1	

0	Solution	Mork	Total	Commont
v v	Solution	Mark	Total	Comment
2	$\frac{15+7\sqrt{3}}{9+5\sqrt{3}} \times \frac{9-5\sqrt{3}}{9-5\sqrt{3}}$	M1		writing correct quotient and multiplying by correct conjugate of denominator
	(Numerator =) $135 - 75\sqrt{3} + 63\sqrt{3} - 105$	A1		$30 - 12\sqrt{3}$
	(Denominator = $81 - 45\sqrt{3} + 45\sqrt{3} - 75$) = 6	B1		must be seen as denominator
	$\left(\frac{30-12\sqrt{3}}{6}\right) = 5 - 2\sqrt{3}$	A1cso	4	units (cm) need not be given
	Alternative			
	$(9+5\sqrt{3})(m+n\sqrt{3})$			
	$=9m+15n+5m\sqrt{3}+9n\sqrt{3}$	(M1)		must be correct
	9m + 15n = 15, $5m + 9n = 7$	(A1)		both equations correct
	m = 5 , $n = -2$	(A1)		either correct
	$5 - 2 \sqrt{3}$	(A1)		
	5 205	(111)		
	Total		4	
	No marks if candidate uses $\frac{9+5\sqrt{3}}{15+7\sqrt{3}}$ Condone multiplication by $9-5\sqrt{3}$ instead of $\frac{9-5\sqrt{3}}{9-5\sqrt{3}}$ for M1 only if subsequent working shows multiplication by both numerator and denominator – otherwise M0 . May use alternative conjugate $\frac{15+7\sqrt{3}}{9+5\sqrt{3}} \times \frac{5\sqrt{3}-9}{5\sqrt{3}-9}$ M1 numerator = $12\sqrt{3}-30$ A1 denominator = -6 B1 Ignore any incorrect units			

0	Solution	Mark	Total	Comment
		Walk	TULAI	Comment
3 (a)(i)	$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) = 10x^4 + 20x^3$	M1 A1	2	one term correct all correct (no + c etc)
(ii)	$\left(\frac{\mathrm{d}^2 y}{\mathrm{d}x^2}\right) = 40x^3 + 60x^2$	B1 √	1	ft their $\frac{dy}{dx}$
(b)(i)	$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) = 10 - 20 = -10$	B1 √		correctly sub $x = -1$ into their $\frac{dy}{dx}$ and evaluated correctly
	$\frac{\mathrm{d}y}{\mathrm{d}x} < 0$ (therefore y is) decreasing	E1√	2	Must state "decreasing" and $\frac{dy}{dx} < 0$ ft 'therefore y is increasing' and reason
(ii)	(When $x = -1$) $y = 2$	B1		if their value of $\frac{dy}{dx} > 0$
	y - 'their'2 = 'their grad'(x1) but must be tangent and not normal	M1		ft ' their' value of $\frac{dy}{dx}$ when $x = -1$ and ' their' y-coordinate
	y-2 = -10(x+1) or $y = -10x-8$ etc	A1	3	any correct tangent eqn from correct $\frac{dy}{dx}$
(c)	$\left(\frac{dy}{dx}\right) = 10(-2)^4 + 20(-2)^3$	M1		correctly sub $x = -2$ into their $\frac{dy}{dx}$
	$=160-160=0 \implies$ stationary point (when $x = -2$)	A1		correctly shown that $\frac{dy}{dx} = 0$ plus correct statement
	$\left(\frac{d^2 y}{dx^2}\right) = 40(-2)^3 + 60(-2)^2$ $= -320 + 240 = -80 < 0$	M1		correctly sub $x = -2$ into their $\frac{d^2 y}{dx^2}$ or other suitable test for max/min
	(Therefore) maximum (point at Q)	A1	4	either $\frac{d^2 y}{dx^2} = -320+240 < 0$ or $\frac{d^2 y}{dx^2} = -80 < 0$ plus conclusion
	Tatal		10	
(b) (i)	I Otal Accept "gradient is negative so decreasing"	for E1	12	1
	Do not accept "because it is negative" or " $\frac{dy}{dx} = -10$ " as reasons for E1			
(ii)	May earn M1 for attempt to find c using $y=mx+c$ if clearly finding tangent and not normal. Must simplify $x1$ to $x + 1$ for A1			
(c)	May write "their" $10x^4 + 20x^3 = 0$ and attempt to find x for first M1 leading to " $x = -2$ stationary pt" for A1			

Q	Solution	Mark	Total	Comment
4 (a)(i)	$k - (x+3)^2$ $25 - (x+3)^2$	M1 A1	2	or $x^2 + 6x - 16 = (x+3)^2 - 25$ or $q = 3$ stated
(ii)	(Max value =) 25	B 1√	1	ft their <i>p</i>
(b)(i)	(8+x)(2-x)	B1	1	
(ii)				
	y 1 6	M1		\cap shape
	-8	A1		curve roughly symmetrical with max to left of y-axis, curve in all 4 quadrants and y-intercept 16 stated or marked on y-axis
	crosses x-axis at -8 and 2	B1	3	correct - stated or marked on <i>x</i> -axis
	Total		7	
(a)(i)	Example $16 - (x+3)^2 - 9$ earns M1			
(ii)	(-3, 25) scores B0 since maximum value no Allow maximum given as " $y = 25$ "	ot identifie	ed	
(b)(i) (ii)	Condone $-(x-2)(x+8)$, $(x-2)(-x-8)$ e Withhold B1 if more than 2 intercepts	etc		

Q	Solution	Mark	Total	Comment		
5 (a)	$(-3)^3 + c(-3)^2 + d(-3) + 3$	M1		p(-3) attempted		
	$-27 + 9c - 3d + 3 = 0$ $\Rightarrow 3c - d = 8$	A1	2	AG must see this line or equivalent, and must have = 0 on right or left before final result be convinced		
(b)	$2^3 + c \times 2^2 + d \times 2 + 3 = 65$	M1		p(2) attempted & = 65		
	8+4c+2d+3=65	A1	2	correct equation in any form simplifying powers of 2 eg $4c + 2d = 54$		
(c)	5c = 35 or $10d = 130$ OE	M1		correct elimination of c or d using both $3c-d=8$ and their equation from (b)		
	c = 7 d = 13	A1 A1	3			
	Total		7			
(a)	May use long division by $x+3$ but must reach remainder term for M1 Condone missing brackets in p(-3) expression if recovered later as $-27+9c+$ to earn A1					
(b)	Treat parts (b) and (c) holistically May use long division by $x-2$ as far as remainder and equate their remainder to 65 for M1					
(c)	Example $4c+2(3c-8)=54$ earns M1 for eliminating <i>d</i> if equation in part (b) is correct					
	O a la di a m	Marila	Tatal	0		
-------------	---	----------------	-------	---	--	--
<u>Q</u>	Solution	Mark	lotal	Comment		
о (a)(i)	$x^3 - x^2 - 5x + 7 = x + 7$	M1				
	$\Rightarrow x^3 - x^2 - 5x = x$			must see this line OE eg $x^3 - x^2 - 6x = 0$		
	$(x \neq 0) \Longrightarrow x^2 - x - 6 = 0 \int$	A1	2	AG		
(ii)	(x-3)(x+2)	M1		correct		
	x = 3, x = -2	A1		both x values correct		
	A(-2,5) and $C(3,10)$	A1	3	both pairs of coordinates correct		
(b)	$\frac{x^4}{4} - \frac{x^3}{3} - \frac{5x^2}{2} + 7x (+c)$	M1 A1 A1	3	2 terms correct another term correct all correct		
			C			
(c)	$F(-2) = \left[\frac{(-2)^4}{4} - \frac{(-2)^3}{3} - \frac{5(-2)^2}{2} + 7(-2)\right]$	M1		F('their'-2) correctly substituting into their answer to (b), but must have scored M1 in part (b)		
	F(0) - F(-2) =			1		
	$0 - \left(\frac{16}{4} + \frac{8}{3} - \frac{20}{2} - 14\right) = \frac{52}{3}$	A1		correct value using limits correctly		
	Area of trapezium = $\left(\frac{1}{2}(5+7) \times 2\right) = 12$	B1		or rectangle plus triangle		
	Area of $R = \frac{52}{3} - 12 = \frac{16}{3}$	A1	4	$5\frac{1}{3}$ or 5.3		
	Total		12			
(a)(ii)	NMS either (-2,5) or (3,10) scores SC1 and both correct scores SC3 Allow "when $x = 3$, $y = 10$ and when $x = -2$, $y = 5$ " instead of coordinates for final A1					
(c)	Condone missing brackets around "their" -2 for M1 and if recovered and correct on next line for A1					
	Area of trapezium found by integration $\int_{0}^{0} (x+7) dx = \left \frac{x^2}{2} + 7x \right _{-2}^{0} = 12$ earns B1					
	Accept rounded answer of 5.3 etc after correct exact answer seen.					

0	Solution	Mark	Total	Comment		
7	Solution	Wark	TOLAI	Comment		
(a)	$(x-5)^2 + (y6)^2$	M1		one term correct		
		A1		LHS correct with perhaps extra constant		
		A 1	2	terms		
	$(x-5)^2 + (y+6)^2 = 20$	AI	3	equation completely correct		
(b) (i)	<i>C</i> (5,–6)	B1 √	1	correct or ft their (a)		
(ii)	$(radius =) \sqrt{20}$	M1		correct or ft 'their' \sqrt{k} provided RHS > 0		
	$=2\sqrt{5}$	A1	2	must see $\sqrt{20}$ first		
	V					
(c)	Grad $AC = \frac{-62}{5 - 3}$ (= -2)	M1		correct unsimplified, ft their coords of C		
	Grad of tangent $=\frac{1}{2}$	B1 √		ft their $-1/$ grad AC		
		241				
	Equation of tangent is	NI I		through (3, -2)		
	$(y2) = "their \frac{1}{2}"(x - 3)$					
	1			correct equation in any form but $y - 2$		
	$y+2=\frac{-}{2}(x-3)$	AI		must be simplified to $y+2$		
	x - 2y = 7	A1 cso	5			
(d)	$AB^{2} + (their r)^{2} = 6^{2}$	M1		Pythagoras used with 6 as hypotenuse		
	$d^2 + 20 = 36$ or $(AB^2) = 36 - 20$	A 1		values correct with $(2\sqrt{5})^2 - 20$ PI		
	$AB^2 - 16$	AI		values concert with $(2\sqrt{3}) = 2011$		
	AB = 10 Hence $AB = 4$	A1cso	3	notation all correct		
			14			
(a)	$(x-5)^{2} + (y-6)^{2} = (\sqrt{20})^{2}$ scores full ma	arks				
	If final equation is correct then award 3 marks, treating earlier lines with extra terms etc as rough working.					
	If final equation has sign errors then check to see if M1 is earned.					
	Example $(x-5)^2 + (y+6)^2 - 25 + 50 + 41 = 0$ can is with A1 but it this is part of premininary working and final equation is offered as $(x-5)^2 + (y+6)^2 - 20$ then award M1 A1 A1					
	From the $(x - 5)^2 + (y - 6)^2 - 20$ earns M1 A0 · Example $(x - 5)^2 + (y - 6)^2 - 20$ corns M0					
	Example $(x-3) + (y-0) - 20$ can s with A0, Example $(x+3) + (y-0) = 20$ can is with					
(b)(ii)	Candidates may still earn A1 here provided RHS of circle equation is 20.					
	Example $(x+5)^2 + (y-6)^2 = 20$ earns M0 i	in (a) but	can then e	earn M1 A1 for radius = $\sqrt{20} = 2\sqrt{5}$		
	NMS or no $\sqrt{20}$ seen; "radius = $2\sqrt{5}$ " scores SC1 since question says "show that"					
(c)	May earn second M1 for attempt to find cusing $y=mr+c$ if clearly finding tangent and not normal					
(0)	If their gradient of AC is <i>m</i> , then use of $-m$ or $1/m$ with correct coordinates can earn second M1					
(ام/						
(a)	Example $AB = 36 - (2\sqrt{5})^2 = 16 = 4$ scores M1 A1 A0 for poor notation NMS $AB = 4$ scores SC1 since no evidence that exact value of radius has been used					
	NIVIS $AB = 4$ scores SUI since no evidence that exact value of radius has been used.					

0	Solution	Mark	Total	Comment		
<u>v</u>	Solution	IVICI N	Totai	Oomment		
o (a)	3-6x-15x-10 > 0	M1		Correctly multiplied out with > 0		
	-21 x > 7					
	$\Rightarrow x < -\frac{1}{3}$	A1cso	2	all working correct		
(b)	$6x^2 - x - 12 \leqslant 0$					
	(3x+4)(2x-3)	M1		correct factors or correct use of formula as far as $\frac{1 \pm \sqrt{289}}{12}$		
	CVs are $-\frac{4}{3}, \frac{3}{2}$	A1		12		
	<u>++ - + +</u>					
	$-\frac{4}{3}$ $\frac{3}{2}$	M1		use of sign diagram or graph with CVs clearly shown		
	$-\frac{4}{3} \leqslant x \leqslant \frac{3}{2}$	A1	4	or $\frac{3}{2} \ge x \ge -\frac{4}{3}$		
	Total		6			
	TOTAL		75			
(a) (b)	Allow final answer in form $-\frac{1}{3} > x$. For second M1, if critical values are correct then sign diagram or sketch \checkmark must be correct <i>with</i> <i>correct CVs marked</i> . However, if CVs are not correct then second M1 can be earned for attempt at sketch or sign diagram but <i>their CVs</i> MUST be marked on the diagram or sketch. Final A1, inequality must have x and no other letter. <i>Final answer of</i> $x \leq \frac{3}{2}$ AND $x \geq -\frac{4}{3}$ (with or without working) scores 4 marks . (A) $-\frac{4}{3} < x < \frac{3}{2}$ (B) $x \leq \frac{3}{2}$ OR $x \geq -\frac{4}{3}$ (C) $x \leq \frac{3}{2}$, $x \geq -\frac{4}{3}$ (D) $-\frac{4}{3} \leq k \leq \frac{3}{2}$ with or without working each score 3 marks (SC3) Example NMS $\frac{4}{3} \leq x \leq \frac{3}{2}$ scores M0 (since one CV is incorrect) Example NMS $x < \frac{3}{2} + x < -\frac{4}{3}$ scores M1 A1 M0 (since both CVs are correct)					
	Example TVING $x < \frac{1}{2}$, $x < \frac{1}{3}$ scores IVIT AT IVIO (since both CVs are correct)					